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ABSTRACT
The branching graph is a recently introduced object associated
with a polycyclic structure. A few results relating the structure
of a polyhex to that of the corresponding branching graph are

pointed out. The 2=-factors of a polyhex are closely related to
the 1-factors of its branching graph.

INTRODUCTION

The branching graph of a polycyclic graph is a special subgraph. Each
vertex of the polycyclic graph (G) appears in its branching graph B(G) if
and only if it is of at least degree three. Each edge of G appears in
B(G) if and only if it connects two such branching vertices. For example:

The pyrene graph, G. The branching graph of pyrene, B(G).

This abstract object was -introduced1 as a practical aid to diagnosing
whether a graph does or does not have a Hamiltonian path (i.e. a path that
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visits every vertex just once). In a further study2 it was found to
afford some insight into why there are so few Clar sextet 2-factorable
polyhexes among all the polyhexes that are theoretically possible. As the
branching graph appears to have some use in chemical graph theory, it is
desirable to characterize its structure and tc understand its relationship

to other objects. Here we present three results.

DEFINITIONS USED

Polyhex: A polyhex 1is a network of regular hexagons such that any two
hexagons are either disjoint or have a common edge. For a recent review

3
see reference.

1-Factor: If a graph has one, it is a set of disjoint edges that can be
drawn to include every vertex, so that all vertices are of degree one. It

is equivalent to the set of "double' bonds within a Kekulé structure.

~ - il

Kekulé structures 1-Factors of the
of benzene. benzene graph.

2-Factor: If a graph has one, this is a set of disjoint rings that can be
drawn to include every vertex. So, every vertex in this factor is of
degree two. If the 2-factor consists of only one ring it is called a
Hamiltonian circuit.

The perylene A 2-factor of the
graph. perylene graph.
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S

A polyhex graph with a 2-factor that is also a Hamiltonian circuit.

Sextet 2-factor: This is a particular 2-factor in which all the rings are
hexagons, i.e. it is a set of hexagons that accounts for all the vertices.
These factors are of great interest to chemists because it is thought, with
some empirical justification, that benzenoid hydrocarbons that can be fully
drawn as an assembly of aromatic sextets connected by single bonds are

particularly stabLe.I"5

K0 30

The triphenylene graph The triphenylene graph
and its corresponding drawn with inscribed
sextet 2-factor. circles to indicate the

aromatic sextets and its
sextet 2-factorability.

Traceability: A graph is said to be traceable or semi-Hamiltonian, or
to have a Hamiltonian path, if one can trace a path along a connected
sequence of vertices and visit every vertex just once. A Hamiltonian
circuit is a path that visits every vertex just once and then returns to
the starting vertex.

A THEOREM ON THE NUMBER OF 2-FACTORS OF A POLYHEX

In this section we demonstrate the existence of a one-to-one

correspondence between the 2-factors of a polyhex and the 1-factors of its
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branching graph. This result provides the foundation for using branching
graphs in the study of 2-factorability, traceability etc. of polyhexes.
The result, which we now formulate as Theorem 1, was anticipated in

previous papers1’2 but a formal proof was not given.

Theorem 1: The number of 2-factors of a polyhex is equal to the

number of 1-factors of the respective branching graph.

Instead of Theorem 1 we prove a somewhat more general result, namely
Theorem 7Ta. Results similar to Theorem 1a have been known for a Llong
time in graph theory, and are mainly due to Petersen (see for exampteé).

Let G be a graph possessing only vertices of degree two and degree
three. Let VS(G) be the set of vertices of degree three within G.  Denote
by B(G) the subgraph of G induced by the vertices from V3(G).

Theorem la: The number of 2-factors of G is equal to the number of
1=factors of B(G).

It is well known3 that all the vertices of a polyhex are of degree two
or degree three. This means that G in Theorem 1a may be a polyhex. Then
B(G) 1is just its branching graph. Therefore it 1is evident that
Theorem 1 is an immediate special case of Theorem 1a.

Proof. Denote the number of 2-factors of G by f, and the number of
1-factors of B(G) by f1.

(a) Let F2 be a 2-factor of G. Then FZ contains all the edges of G which
(in G) are incident to all vertices of degree two. However, exactly one
edge incident to each vertex of degree 3 of G is not contained in FZ' These
edges both start and finish at vertices from V3(G). Hence the edges of G
not contained in F2 form a 1-factor of B(G). This 1-factor is uniquely
determined by F2, and to distinct 2-factors of G there correspond distinct
1-factors of B(G). Therefore f, 2ﬁf2.

(b) Let F1 be a 1-factor of B(G). Delete from G the edges of F1. In the
graph which ds obtained in this manner all vertices are of degree tuwo.
Hence this graph is a 2-factor of G. This 2=factor is uniquely determined
by F1, and to distinct 1-factors of B(G) there correspond distinct
2-factors of G.  Therefore f, > fq

From ff} ‘f2 and fE) f1 it follows that f1=f2. =7
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Corollary 1.1. In the proof of Theorem 1a a one-to~one correspondence
between the 2-factors of G and the 1-factors of B(G) was established. Thus
the study of the 2-factors of G is reduced to a task which is much more
familiar to organic chemists, namely to the examination of 1-factors
(equivalent to Kekul®& structures) of the smaller graph B(G).

TOWARDS THE CHARACTERIZATION OF BRANCHING GRAPHS

An  obvious question arising from the concept of branching graphs is:
which graphs can be branching graphs ? At present we do not know the
complete solution of this problem, but can offer only a few partial
results. In the first place, it is remarkable that sometimes the

branching graph of a polyhex is a polyhex itself.

Theorem 2. If P is a sextet 2-factorable polyhex, then each component of
its branching graph B(P) is either a polyhex or is composed of several
disjoint polyhex units where each edge connecting these units corresponds
to an essentially single bond, i.e. a bond that is single in all Kekul@

© and 3° illustrate the cases which may

structures. The examples 1°, 2
occur, In the respective polyhexes the sextet 2-factor is indicated by

circles symbolizing Clar-type aromatic sextets.

Proof. This follows by induction on the number of hexagons of P. The
smallest sextet 2-factorable polyhexes are the benzene graph (one hexagon)
and the triphenylene graph (four hexagons). Theorem 2 holds in a trivial
manner for the benzene graph. Its validity for the triphenylene graph
(whose branching graph is benzene) is also immediate. Hence Theorem 2
holds for the first two members of the sextet 2-factorable polyhex family.

P 3(,)
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B(P;)

ALL other sextet 2-factorable polyhexes can be obtained by means of one
or more of the following construction modes (for details see reference3,
Chapter 4.9; and referenceT). Examining the five cases one by one we can
easily check that if the branching graph in the starting polyhex has the
form described in Theorem 2, then the branching graph of the resulting
polyhex also has the same form. These Llatter branching graphs are
indicated below by the hatched diagrams. We see that 1° results from the
construction modes (c), (d) and (e); case 2% from the mode (a); whereas
case 3° is obtained when the construction mode (b) is applied.

Since the modes (a)-(e) suffice for the construction of all sextet 2-

factorable polyhexes, the proof by induction is complete. =
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The reverse of Theorem 2 is not true, namely if the branching graph is
a polyhex, then the original polyhex need not be sextet 2-factorable.

Moreover, the sextet 2-factorability of a polyhex cannot in general be
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deduced from the respective branching graph. This is illustrated by the
polyhexes P4 and P5 which have the same branching graph (= the coronene

graph); P, is sextet 2-factorable whereas P5 is not.

4

B(PA ) = B(PS)

These examples show that a polyhex may be the branching graph of more
than one polyhex. In fact if P is a polyhex then P can be the branching
graph of two different polyhexes or ¢f a single polyhex or of no polyhex at
all. For instance, Pé is the branching graph of a unique polyhex, namely

P?. On the other hand P8 is not a branching graph.

I
P P

8
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It was conjectured1 that two is the maximum number of polyhexes
compatible with the same branching graph when the branching graph is a
polyhex. We now show that this conjecture is true. However, it should be
noted that if the branching graph is not a polyhex, then it can be the
'child* of more than two polyhexes, because several geometric
configurations of the branching graph may be possible, and each may be

associated with a different polyhex.

Theorem 3. A polyhex P cannot be the branching graph of more than two
distinct polyhexes.

Proof. Suppose that we want to construct a polyhex Pt such that P is its
branching graph. Then we have to add hexagons to the perimeter of P so
that each vertex of degree two in P becomes a vertex of degree three in P*.
The newly added hexagons must possess at lLeast one vertex of degree two.
Such an addition can be realised in four distinct ways, viz. (a)=(d).

The newly added hexagon is indicated by hatching. The vertices which
are of degree two in P and of degree three in P* are indicated by heavy
dots.

(a) _’ %

i
(b)

X0~ X2
* - TR
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Theorem 3 follows nocw from the observation that each new hexagon
transforms exactly two vertices of degree two into vertices of degree
three. Hence the transformation P — P* requires that, following the
perimeter of P, the vertices of degree two of P be grouped into pairs.
Such a grouping can be done in at most two ways. Consequently there will
be at most two distinct polyhexes whose branching graph is P. o

Corollary 3.1. 1If a polyhex P is a branching graph then the vertices of
degree two on its perimeter are separated by at most 3 vertices of degree

three.

Proof. If two vertices of

degree two are separated by

more than three vertices of

degree three, then P possesses ——  fjord
a fjord.

5 s T %
It is clearly impossible to construct P in such a case.

A COUNTER-EXAMPLE FOR A CONJECTURE ON BRANCHING GRAPHS

Denote the minimum number of components of a 2-factor of P by C(P). A
polyhex having a connected 2-factor (i.e. C(P}=1) is traceable. Kirby‘I
showed that a polyhex P with C(P)=2 is traceable, and conjectured that it
is also traceable if C{P)>2 provided that the disconnections giving
C{P)> 2 do not arise from more than one branching graph component.

This conjecture is false however, as can be seen from the counter=—

example P9.
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9 B(Pg) B(P9)' (PQ)ZF

The polyhex P9 is chosen so that its branching graph, B(Pq), is

P,

connected and has a unique 1-factor, B(PQ)'. According to Theorem 1, P9
has a unique 2-factor. Deleting from P9 the edges of B(Pg)', the 2-factor
(PQ)ZF is immediately obtained. For this example C(P9)=4 and B(P) is
connected, vyet P9 is untraceable. It is difficult to demonstrate
conclusively by trial and error that a graph is untraceable. In order to
increase confidence in this conclusion, it is necessary to consider the
basis wupon which the original conjecture was founded1. This dimplicitly
introduced another graph theoretical entity which we will here call a 'k-
branch-factor'. This is defined by analogy with the familiar concept of
'principal resonance structures' (of which Kekul® structures form one

class) used in crganic chemistry., Thus a 2-Branch-factor, if a graph has

one, 1is a set of disjoint edges that can be drawn to account for all but

two of the vertices. Ffor example -

I

. ]
L AN 4 T
The naphthalene graph and some of its 2-branch-factors.

l and

SO ONuaw

This concept can be generalised in an obvicus manner to k-branch-
factors where k is even. For any given branching graph B{(P) of a polyhex
P, there will exist a minimum value for k. For example, if B(P) has no 1-
factors, then k»2. Let the edges in a (minimal k) k-branch-facteor of B(P}
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be deleted from P. Provided that the resultant graph is connected, then
19 1¢ k=0, B(P) has 1-factors; P has a Hamiltonian path and is traceable.

(o]

2

The branching graph of P1U’ has no 1-

factors (equivalent to  O-branch—

factors), but it does have 2-branch- \\]”’

factors. Deleting such an edge set

from P10 gives a connected spanning :

subgraph™ with just two branching N
P10 :

If k=2; P has no Hamiltonian circuit, but is traceable.

vertices, and immediately indicates
some of the Hamiltonian paths in P1D'
3% 1f k>2 then any similarly derived spanning subgraph will have at least

four branches, and it is easily shown that this makes P untraceable.

The conjecture being examined, rested wupon the supposition that,
because when a O-branch—factor exists it is always possible to generate a
k=branch=factor for k=2 (non minimal), then P would be traceable, This was
mistaken, because edge deletion may still give rise to disconnection.
Examination of B(Pq) shows that 2-branch-factors also all give rise to

disconnection. This is strong confirmatery evidence that P9 is untraceable.
CONCLUSION

This study has revealed some properties of the branching graphs of
polyhexes. Theorem 1 concerns the relationship between the 2=factors of a
polyhex and the 1-factors of its branching graph. This is followed by the
results (Theorems 2 and 3) of structural investigations for the case where
the branching graph is jtself a polyhex. We have not fully characterized
these objects and, although more results may emerge, the conditions which
must be fulfilled may be graph theoretical or geometrical, and are
complicated. Characterization of branching graphs that are not polyhexes
seems to be even more difficult, but further examination of these novel
objects in the topologicat theory of benzenoid molecules, and other
polycyclic structures, is desirable.
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