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Abstract : An approximate, empirical parameter-free formula that expresses
the total r-electron energy of alternant ground state hydrocarbons as the
function of the number of carbon atoms (N), the number of carbon-carbon
bonds (M) and the algebraic structure count (K) is derived from the
principle of corresponding spectral densities. The calculated energies
match the exact energies within 0.13 % of the mean and 0.76 % of the
maximal error. The present approach offers a solution of the problem
concerning the (N,M,K)-dependence of ET that is satisfactory from both
theoretical (no empirical parameters) and practical (high accuracy) point

of view.



INTRODUCTION

Among the concepts of chemical topology, the adjacency matrix, A,

plays a central role [1]. Let us introduce a formal definition of A:
Definition: Let the square matrix A has the elements Aij' If these clements
conform to the conditions:

1. A.. is equal to 0 or 1 for any pair (i,j),

1]

0., i w5 ke
ij 1

3. Aii = 0 for any i,

for any pair (i,]),

4. 1<%X Aij <3 for any i,
J

then 4 is called the adjacency matrix.

In the present paper we deal with the adjacency matrices associated
with alternant non-radical hydrocarbons, i.e. matrices that bear two
additional properties:

1. All the eigenvalues of 4 have non-zero values.
2. A can be factorized as follows:

0 B

J
1"

(1
B’ 0
The problem to be solved is derivation of an approximate formula that
relates the trace of the absolute value of A:
E, = Tr [4] 2
to the dimension of the matrix & (N), its second moment:
oM = Tr A2 (3)
and its determinant:

M2 82 - et 4 . (4)



The above quantities can be also interpreted [1] as the number of
carbon atoms (N), the number of carbon-carbon bonds (M) and the algebraic
structure count (K) of the molecule described by A. The total r-electron
energy of the molecule calculated within Huckel theory is identical with E_
[1] and can be used for assessing the stability of the molecule in
question. Therefore, estimation of B from N, X and K is of great
importance for it allows to estimate the energy without explicit
diagonalization of A. It also constitutes an interesting mathematical

problem.

HISTORICAL OVERVIEW

The problem of an approximate dependence of E, upon N, M and K was
addressed as early as in 1949 [2]. The formula proposed by Carter read:
E,xAN+BInk+C , (5)
where A, B and C vere empirical parameters. Since then, more than twenty
different formulae for E have been proposed, all of them containing some
empirical parameters obtained by a numerical fitting [3]. Let us review
some of them:

Eq.(2) has an advantage of being size comsistent, but provides rather
poor numerical approximation for B . A significant reduction of the
discrepancy between the exact and approximate E’r is achieved in the

equation [4]:

B AN-BU+CN (k)% (6)
with four empirical parameters. Equations:

RNRCEARS § ECT LA N
where:

a=(82) -1 5 (8)
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and

B e AN+ BH+ KDY [g) (9)
offer a similar accuracy. Eventually, the formula [7]:

B, ~ 4 (202 by g2/ (10)
has only two empirical parameters, but works as satisfactorily as the above
formulae with three or four parameters.

The existence of several different, though gquite accurate,
relationships between E_, N, ¥ and K is certainly confusing and surprising
at the first glance. The dependence of E, upon K is expressed as linear
{eqs.7 and 9), logarithmic (eq.5), or even more complicated, like (lnlli)‘;”’G
(eq.6) or 2/ (eq.10). How are all these different functions capable of
providing quite good estimates of E 7 The answer is simple. As pointed out
by Gutman et al. [3], in the case of benzenoid hydrocarbons, the dependence
on N and ¥ accounts for more than 99 % of the energy. The remaining 1 7 is
due to variation in K (about 0.9 %) and other structural factors (about 0.1
%). Therefore it is not unexpected that almost any function of K
(especially the one that has a lot of empirical parameters) can fit
reasonably well to the exact energies.

The above conclusion has twofold consequences. The first one is of
practical sort. The total r-electron energy can be easily estimated from
the values of N, M and K and it really does not matter what approximate
formula one uses. On the other hand, one has to admit that there is mo
purely theoretical approach to the problem of the (N,M,K) dependence of B
and this prompts us to present the approach that bears no empirical

parameters and, at the same time, provides very reasonable results.
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THEORY

Let us denote the molecular graph describing a given hydrocarbon by G
and the corresponding adjacency matrix by A(G). The kmowledge of the
eigenvalues of A(G), {xi, i=1,N} provides all the necessary information to

vrite down the spectral demsity function [7-9]:

N
I(G,t) :i§16(tfxi) (11)
The spectral density has to conform to the following constraints:
-m
JI(G,t) dt = N (12)
+m
-®
S T(G,t) |t] dt = B, ) (18)
+m
~a 9
J I{G,t) 7 dt = 20 (14)
+@
and
- 9
{ I(6,t) In|t] dt = 1nK® . (15)
+m

In the case when only the information about N, M and K is available, ome

has to make an assumption that the spectral demsity function depends only

on these topological invariants:

I(6,t) = T(N,M,E,t) . (16)
Let us use the substitution [9]:

(N, N, K, 1) = (Va2 e, u, x, (v (n

that brings the equations (12)- (15) into:

FeaKe) dt =1, (18)
JENAKE) [t dt = () M2 = e, (19)

1K) t2dt =1, (20)

+m
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16(NEK,t) Inje] dt = 1n [ KN 4y VY = ke, (21)

and yields natural definitions for the McClelland quotient (e) and the
normalized structure count (k) [8]. The mext step in our reasoning is
obvious: in order to satisfy the equations (18)-(21) for any value of N, X
and K, G(N,¥,K,t) must be a sole function of only two parameters, namely k
and t. As an immediate conclusion we obtain the result that e is related in
an approximate way to k by a universal function F(k) [7-10]:

ex F(k) , or B_~ (202 p{ k2N (owpmy V25 (22)

In the derivation of this "principle of corresponding spectral
densities" [11] no assumptions are made about the nature of the molecule
represented by the graph G, except for the condition that it is an
alternant hydrocarbon with K#0.

Now one should pose the question about explicit form of the universal
function F(k). Simple linear and quadratic approximations have been
proposed [7,8] together with a more elaborate approach involving a model
spectral density function [9]. Very recently a further investigation on the
form of F(k) has been pursued by Gutman et al. [10]. All those attempts
lean on fitting of empirical parameter to the exact total z-electron
energies.

Since only very little was assumed about nature of the graph G, we can
use the topological characteristics of some well-defined classes of
conjugated molecules to enlighten the form of F(k). The goal of this study
would be twofold: First, one could verify whether different algebraic forms
of F(k) that originate from different classes of molecules yield similar
values of e, therefore confirming (or denying) the validity of the
hypothesis of corresponding spectral densities. Second, one could obtain

empirical parameter- free formulae for E'.
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Two choices of the model classes appear obvious: aromatic annulenes
and polyenes with an even number of carbon atoms. For the first family of

molecules, e and k is related to the number of carbon atoms (N) through the

formulae:

e =232 N1 [sin(yW)] ! (23)
and

M CE T (24)
which yields:

e =B (k) = 212 y) { sin [ru@)/9)] ¥, (25)
where:

u(k) = logy 2% . (26)
For polyenes, the analogous relations read:

e = [2/ N(W1)]1/2 [ { sin [r /(202)] T L 1] : (27)
k= [N/(2N-2)]1/2 (28)
and

e=Fy(x) = k1 @%1) { [sin (rv()/2]1- 1) (29)
with:

v(k) = (2x%1) / (@ad1) . (30)

In spite of very different algebraic forms of F (k) and Fy(k), they
provide remarkably similar values of e for k spanning a wide range of

0.7-1.0 (Table 1). This undoubtedly supports the above hypothesis.

NUMERICAL TESTING AND DISCUSSION

In order to obtain a further insight into numerical accuracy of the
formulae (25) and (29), we performed calculations of the exact and
approximate total r-electron energies for all planar, singlet ground state

benzenoid hydrocarbons with 1-10 ten rings. The database comprised 18,388
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structures and covered values of k lying within the range of 0.713-0.891.
Both models were tested together with a simple linear and quadratic
approximations to F(k) [7,8]. The results are presented in Table 2.

It is clear that among the models without empirical parameters, the
linear polyenes model gives the best results. The formulae with empirical
parameters perform slightly better in average, but they result in higher
maximal error. Taking the above observation into account, we conclude that
the function Fz(k) is an extremely good approximation to the relationship
between k and e for benzenoid hydrocarbons and therefore their total

7-electron energies can be adequately approximated by the equation:

B, 20 KN oym) ©%) (fsin ()t -1y, (31)
with
LT R S S AR (TR S (32)

Eventually, in Table 3 we present the results of test calculations for
the exact and approximate energies of benzenoid hydrocarbons. The
parameter- free formula (31) works as good as the approximations (6) and (9)
that have four empirical parameters! In fact, these formulae have been the
best approximations known until now.

The above examples convince as to consider regard the above theory as
the final solution for the problem of the (N,M,K) dependence of E_. The
derived approximation provides results of a considerable accuracy. The
approximate energy is size-extensive and is an increasing function of the
algebraic structure count, K, as expected from the VB theory.

Ve believe that in this paper we have been able to shed more light at
the topological dependence of the total z-electron energy of conjugated
systems. Dur approach does not require amy empirical parameters. Instead,

we use the energies of linear polyenes as a template for all other systems.
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Therefore the present work is not just another numerical experiment om the
E_, but has a sound mathematical foundations. It can be a starting point

for more research, particularly on the resonance energy.

Table 1. Comparison of the functions Pi(k] and Fzgk).

k P, (k) Fy(k)
1.00 1.000 1.000
0.98 0.988 0.989
0.96 0.977 0.977
0.94 0.966 0.967
0.92 0.956 0.956
0.90 0.947 0.947
0.88 0.938 0.937
0.86 0.931 0.929
0.84 0.924 0.921
0.82 0.918 0.914
0.80 0.912 0.908
0.78 0.908 0.503
0.76 0.904 0.900
0.74 0.902 0.898
0.72 0.901 0.899

0.70 0.900 0.902




Table 2. Errors of various approximations to e.

Approximation Error

mean dev. RES maximal
aromatic annulenes model 2.98-10°3 3.11-10°3 5.26-1073
linear polyenes model 1.21-10° % 1.74-10°3 6.85-10° 5
linear fit TS0 Y 1482070 1.77.20 2
quadratic fit 5.90.10%  8.20.10%  9.37.10°%

Table 3. Relative errors of various (N.M,K)-approximations

to B .

Approximation Error

mean dev. RES maximal
aromatic annulenes model 0.33 % 0.34 % 0.58 %
linear polyenes model 0.13 % 0.19 % 0.76 %
linear fit 0.08 % 0.13 % 1.88 %
quadratic fit 0.07 % 0.09 % 0.99 %
eq.9 [6] 0.22%  0.23%  0.75 %
eq.6 [4] 0.087  0.147% 1.7 7
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