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ABSTRACT

A particutar class of simple connected graphs 1s specified
Each graph H of this class, consists of two subgraphs Gy and G
which are connected either by an edge (a bridge), or by a
common vertex, or by a common edge. Within this class of
graphs, there aiways exist pairs of graphs Hy and H; such that
H, c¢an be regarded as obtained from Hy by the transfer of G;
with respect to Gy. A subclass of transfer chain graphs Ls
also specified by the presence of a transfer chain (a path
subgraph; to the vertices of which any Kind of cother
supgraphs may be attached. The intercenversions ¢f grapns H
and H; correspond to melecular rearrangements in Lsomeric
compounds., The metric properties of these graphs and, par—
ticulariy, the change i1n the wiener number AW produced by the
various fragment transfers 1s studied in detail making use of
the formalism developed in Part I [1]. A number of properties
and coroliaries 1s proved for AW of transfer grapns Lhciuding
here the cenditions for two sSuch graphs to have the same Wiener
number (i1scwiener graphs) or to have the same difference in the
wiener number (iLsodifferent graphs).
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INTRODUCTION

The metric properties of graphs have been for a long
time of i1nterest in mathematics [2-7] and in appiy.ing
mathematical methods in various scientific fields such as
electrical engineering [8], transport networks [(9), geology
{10), biology [11), psychology (12), socliology [13), etc. Due
to its speclfic nature, chemistry is that particular branch of
science in which the concept of graph distances has found the

most extensive applications [14,15].

Among the various metric¢ characteristics of a graph G (6]
it is the Wiener number W(G) which ls of greatest importance
Introduced empiricaiity by H. Wiener [16] this number equais the
sum of distances between any pair of graph vertices or, other-
wise, 1t 1s the half-sum of all distance matrix entries [2].
Being a good numerical measure for the compactness of a system
or for its element interdependence, the Wiener number proved to
be of relevance to physico-chemical properties of chemical
compounds (17-20), polymers [(21-24), and crystats [25-2T7]. It
has been applied to quantlitative structure-property [28-33] and
structure-activity (34) correlations. More general studies on
mo lecular branching [35] and cycliclty [36-37] have also been
performed on thlis basis. Very recently, some Light was shed
[33]) on the problem why does this topological Lndex work so
well in structural chemistry by establishing its close relation
to another graph-invariant, the number of self-returning watks,
which has a direct quantum-mechanical background [39).

In Part I of this series (1) we developed a new formalism

for the study of the Wiener number based on the distance



numbers of graph vertices (the sum of the distances from

ali graph vertices to a certain vertex). The changes in

the distance and Wiener numbers after some graph operations
were studied, and a number cf properties was proved for these
guantities. In the present work we introduce some particular
classes of graphs for whicn the changes in the Wiener number
after some specified graph transformations are lnvestigated
and expressed i1n a number of properties and formuiae inctuding
essential structural parameters. As shown in a subsequent
publication {40} the new formalism provides a more general

treatment of molecular branching.

¢. GENERAL "TRANSFER GRAPH3"

Let the simple connected non-isomorpnous graphs Hy and
H; be consldered. Let also Hy and H; be built by the same non-
Lsomerphous graphs G; and G; which are either: (1) llnked by an
edge (a briage) lauj or {av}, a€G;, u, v€G, or (il) are covered
upon a vertex a = u or a = v, or (ii11) are covered upon an edge
taya;] s (uyw! or {aja ) = (vyvzl: w.u,vy,v; €G ;a,a €.
Obviously, Hy and H; differ solely in the speciflic location of
G, with respect to Gyj. Otherwise, H; may be regarded as
obtained from H; upon a transfer of G, from the initial
vertex(es) u {uy;,u;) to another one(s) v(vy,vpy). In the
followlng each palr of graphs H; and H; that obeys the above
conditions witl be termed "transfer graphs". An important type
of transfer graphs will be considered in Section 3. Depending
on the Kind of Gy - G linKage, the transfer graphs can be
divided into three classes corresponding to cases (t}, (il1),

and {iii) given above. The notations HY, H%,and H! will be used



in these cases where the symbols b, s, and f are abbreviations
for bridged-, spiro-, and fused G, and G;. Each H® or H' graph
posseses at ileast one cut set of vertices [41] of cardinality 1
white each Hf grapnh possesses at least one cut set of edges (3]
of cardinality one. The vertices u and Vv in H andg HY, as well
as the pair of vertices u;, u, and vy, v; in H will be termed

"transfer vertices". Evidently, in the case of molecular graphs,

Hy and H; may be regarded as representatives of the wel! Known
case of constitutional isomers in chemistry. Hence, the Hj——H,
transformation corresponds to the large class of molecular
rearrangements in which a molecular fragment (tinked by a sole
bond or spiro-iinked or fused to the remaining part of the

molecule) i1s displaced from its init:ral location to another one

(Fig. 1a,b, c).
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Fig. 1. A general presentation of the so-called transfer graphs
Hy and H; and their three classes in which the subgraph
G; 15 linKed with the subgraph G :
a) by an edge (a bridge), class H'; b) by a common
vertex (spiro-iinkage), class H*; ¢) by a common
edge (cycle fusion), class



The Wiener number of both Hy dand H; can be determined
by making use of the equations derived in Part I of this series
[1] (egs. 1.22, 1l.16, and I.19) for grapns obtained from
their subgraphs Gy and G; by the three operations described
above (joined by an edge and covered upon a vertex or edge,

respectively). Eq. (I.16) 1s given here in a simplified form:

W(H ) = w(G w(G d(u|G d(aja 1
(H?) { t) + W( a) + n|nE + na (u] '} + n' (a) z) (1)
W(HS ) = W(G’) + W(Gzl + (na—i)d(u|Gla + {nI-T)d(a|G!) (2)

wHf) = W(G W(G 1 1/2 .{t| - nn n -2)(d(u |G
(Hf ) (8, + W(B,) + 1 + 1/2(|q|. [t - BN + (0 -2)(d(u |G)

1
+ cl(uE |G‘ )l o+ (n| -2) [d(aI ‘Gz) + d[az #Gz 3 [d.(u| 161) -
- d(uE|Gl)].[d(ai|GE) 7 d{az|Gz)i (3)

Here ny and n, stand for the number of vertices

of subgraphs G; and G, W(H;) and W(H; ) are the Wiener numbers
of grapns I"I1 and Hz. respectively; d(x|GJ) i1s the distance
number of vertex X in the subgraph G!. J = 1 or 2; |q| and itl
are the cardinaiities of the subsets of those vertlices in G
and G; that are equally distant from vertices u; u;, and a;,
a;, respectively.

It should be noted that eq. (1) is valid for three
different classes of chemical compounds: those ¢f acyclic,
branched cyclic, and bridged cyclic compounds, since they all
are represented by the same class of transfer graphs, HY (See
also FLg.2a, b, and ¢)

Egs. (1) to (3) are actually written for graph Hy. They
can also ke used for Hp by repiacing u, u;,and u by Vv, vy, and
vy, respectively (See Fig.1). Then, by subtracting the three
pairs of equations for W(H ) and W(H;) one arrives at equations

(4) to (6) for the change in the Wiener number produced by the



descrilked transformations of H) tnte Hy

awd wmbl ) - wmb? )= om [du|E ) - AvjE )] (4)
1
aws = W(H' ) - W(H' ) = (n_ -1) [4(u)G ) - d4d(v|G )] (5}
| i 2 i '
awl = W(H ) - Wi ) < 1/2tin @) [ddu §6 5 ¢ d(u, (6 ) -
{§
- d(v |G - d{v_ |G + [d{a |G )-dia_ |G
v 8 ) :2|‘)) [(I]I)le{z]
fd(v |G ) - d{u |G ) + d(u |G ) - d(v |G )]} (6)
H i i i 3 1 R |

BEquations (4) to (6) provide the basis for the calculation
of the change in the Wiener number produced by any Kind of
fragment displacement i1n molecutar graphs. They can be applied
to the study of molecular property alterations occurring during
the respective molecular rearrangements. (3ee e. g, refs. [4-61).
The real importance of eqgs. (4) to (©6), however, Ls in the
possibility they offer for a generalized treatment of the
alterations in topoiogy occuring during such molecular
transformations. More specifically, relations of inequality or
equality of the Wiener number of molecular graphs can be thus
deduced, providing also a generaiized approach towards
moiecular branching and cyciicity. The fragment displacements
can be thus studied in chemical compounds with any possible
topology: acyclic, branched c¢yclic, bridged cyclic, splro-
eyclie, and fused cyclic ones, as well as in compounds with a
mixed type of cycle linkage (Fig. 2)

Equations (4) to (6) exhibit some properties of the change
in the Wiener number AW occurring during the graph
transformation under study: the transfer of graph G;, which is
Juined to graph G, by an edge, or has a common vertex or a
commoen edge with Gy, from the initial transfer vertex(es) to

the final one(s)



Froperty &.1. For transfer graphs of HY and H® c¢lasses
neither the sign of AW nor i1ts annulation depends on the
transferred graph G;.

Property 2.2a. For transfer graphs of H® and H® classes
the vaiuée of AW doés not depend on the topology of the
transferred graph G, but it depends on the total number of
vertices of Gp.

Froperty &.2b. For transfer graphs of Hf class the

vaiue of AW depends ¢n the totai number of vertices of the
transferred graph G; , as weil as on the distance numbers of the
palr of L1ts transfer vertices

For tack c¢f more specific regquirements in Properties 2.1,
2.2a, and 2.2b, the transferred graph G; can be any acyclic or
cyclic graph.

Property 2.3. Botli the sign and value of AW depend on
the difference in the distance numbers of the two transfer
vertices in G

As a consequence ¢f Property 2.3 the graph Gy can
also be any cyclic or acycilc graph. Twoe more general

cunsequences can alsc be formulated
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Fig.Z. Itlusiration of the possiblie application of egs. (1) to
{6) ty fragment transfers in: a) a cyclic, b) branched
cycelle, ¢) bridged cyclic, d) spiro-cyclic,e) fused cyc-
Lic, ) cyolic compounds with mixed type of cycle Linkage



Corcitary 1 to Property 2.3

1f for graphs HY and H% , as weli as for H% and H%
d(ulGla z d(v{Gt) (Ta)
or 1f for graphs Hff and Hf,
diui JG.’ : d.(vl |Gi). d(uzle'.‘: z d(vtiGI) (Th)
hold, then
awt = W(HY ) - W(HY ) = O (8}
where L = b, s, or f.

The proof of eq. (8) follows immediately from the
wnsertion of condition (7a) inte egs. (4) and (9), as well as
from the insertion of (7b) into eg. (&).

Evidently, equalities (7) represent the necessary and
sufficient conditions for the transfer graphs H; and H; to have
the same Wiener number. Such graphs will be termed "isowlener
graphs”. Some classes of lsowlener transfer graphs wiii be
specified in Section 3.

Corollary 2 to Property 2.3

I1f for graphs HY and HY

1 = const (9a),
and a{u|G ) - d.(v‘|G| ) = const = b
L
or diu IG ) = d(v |G Vo= d(u |G )y - atwv !G ) =¢onst = b (9b)
PET (N PR 2y

hetd at a time. Then one obtains
awl = W(HY) - W(HY) = const = (mp - a)b (10)
where a = 0,1 or 2 for + = b,s, and f, respectively.
In addition, 1f for graphs Hf; ana Hf
n; = const (9¢c)
- / -~
dcu. lu') - d(vl |G ) = const d(uz |GI) - d(vzluz) = const (9d)

i
dfa ;G y - d(a |G ) = const (9e)
1R FIR



hotd at a time. Then again cone obtains
awl = wat ) - wiah ) - const (10a)
The proof 13 analogous te that of Coroltary 1. Egqualities
{94) to (9e; represent the necessary and sufficient conditions
for the pairs of transfer graphs H, and H; to have a constant
difference in their Wiener numbérs for different pairs of

subgraphs & and G;. The pairs of graphs H;y and H, satisfying

eq. {10y will be termed "iscdifferent transfer grapns". Some

classes of such transfer graphs will be specified in Section 3.

Properties 2.1 to 2.3 and the two corollaries t¢ Property
2.3 formuzlated in the foregoing refer to such G; transfers
which preserve the kKind of thelr linkKage with Gy {(b-, s-, or f-
ctass). wWhen, however, the attachment type 15 changed upon the
3; transfer, AW loses a great deal of these properties. This
13 demonstrated below proceeding from two new equations (t1a)
and (11k) for the change in the Wiener number during the G;
transfer at which the l.inkKage of Gp and G; alters from b- to s-
class, and vice versa, These equations are derived by the

subtraction of eqgs. (1) and (2).

awhs - wmh’; " wu-l‘e; = ne Ld.(ufG1 )—a(le} ¥l o+ n nz +
+ dv|G ) ¢ d(a)G,), (11a)
awsh - W(H’I) - W(HDE) = [d(uFGl) - d(v|Gi)l -
-nn - d(ufg ) - d(a|g ). 11b
12 % 157 i E

As seen {from eqgs. (11&,b} FProperties 2.1 and 2.:2a are no
more valid while Froperty 2.3 and 1ts two corcollaries become
more complicated, due to the three additicnal terms as compared

wLth eqs. (4} and (5).
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Property 2.4. When the transfer of graph G, cccurs
with a simultaneous change in the Kind of G - G, attachment
from bridged to spirc- one, or vice versa, the sign and value
of AW depend on the distance numbers of the transfer vertices
G and G;, as well as on the totai number of vertices in §
and G .

Coroltary 1 to Property &. 4.

If for graphs HY and H% , the first one being of b-class
and the second one being of s-class
no[du|G ) - Av|6 )] = - nn - AV|G ) - dlajd ) (12a}
¢ [ b P2 | 2

or, vice versa, Lf for graphs H-‘, and th

n [d(u|G Y = d(v|\3 3] = nNRK + d(u|G y o+ d(aiG ) (12b)
2 1 I L4 i 14

hotd, then

AWDS o wW(HY 0 - W{HS ) = awsb o w(HS ) - weHb ) - O {(13)

Equalities (12) represent the necessary and sufficient
condition for pairs of graphs (HY), , H% j and (HS; , HY% )} to be
Lsowiener graphs.

Coroltiary ¢ to Froperty 2.4 could be simitarty formutated.

A more general property can be formulated which refers to
all the three cases ¢f G; transfers that change the G - G
linkage type; bridging =—= spiro, bridging == fusion, and
spiro =—= fusion (b==s, b=1f, and s ==f, respectively). The
notation Wh!  wiil be used where 1,) = b,s, or f, and i = J.

Property 2.5. Both sign and value of Awh) depend
on the change in the type of Linking graphs G, to Gj.

This property fotlcws for b ==s transfers from inspection of
egqs. (11a,b) where the three additional terms, takKen with their
signs plus or minus, influence sirongly the value of AW and

can alter the AW sign.
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Inspite of the generaiity of our approach we do not present
here the equations describing the other two cases of Hy -—— H;
transformation which alter the linkKage type of G, and G
(fusion == Dbridging and fusion = SPILro). Albelt, as
readlily obtained by subtracting the pairs of eqs. (1), (3) and
(2), (3) these equations will be given i1n a subsequent
publication [42]), devoted to cyclicity of molecular systems.
Fragment transfers in bridged, spiro-, and fused cyctlic
compounds will be analyzed in detail there. In the present pap-
er, besides the general properties of the change in the Wiener
number upon the specified graph transformations, we develop the
basis for treating from a general view-point [40] the problem of
branching in acyclic (Fi1g.2a) and branched cyclic (Flg.:2b)
compounds, as well as In some bridged, spiro-, and fused cyclic
compounds (Fig.2¢,d). With this aim in mind some metric
properties of the lmportant c¢lass of transfer graphs, which we

term "transfer chain graphs", are studied in the next Sectlion 3.

3. TRANSFER CHAIN GRAPHS

3.1. Basic notions and equations

Let now the transfer graphs H; and H; meet the
additional conditlion to contain the same path-subgraph Py

(catled further "transfer chain") whose vertices u, u+f,...,

K,...,v-1,v have positions Jy = 1,2,3,...,0n , respectively.

Let further H; and H, contain the same subgraphs Gy

(L = 0,1,8,...,P), the latter being any Kind of simple connected
grapnhs (either acyclic or cyclic ones) with n; vertices each
one. Each of G; 1s connected with Py either by an edge not

belonging to them (Gﬂl = acyclic or bridged cyclic subgraphs)



or py a common vertex (G% = spiro-linked cyclic subgraph or by
a commen edge or edges (Ghl = fused cyctiic subgraph). Twe Gy
could be connected only by the vertex({es) they have common with
Py . The subgraph G, to be transferred will be denoted by Gy .By
definition Gy f’G,. In this study Gy = GPy or Gy = G%
are considered

The shortest path Wy (K, K’ € Pp ) between any pair of
vertices K and K' belonging to the transfer chain i1s always a
subgraph of the Latter. Due to this, any transfer of Gy from
vertex K to vertex K’ can be treated as a transfer between
positions Jy = t and Jy = n,, l.e. as a transfer between
the two terminal vertices u and v in Py . Actually, «f a fragment
transfer between non-terminal vertices occurs, the two ends of
the transfer chain together with all subgraphs attached to them
could always be treated as two large subgraphs G; and G%l
connected with the two terminai vertices of a shorter transfer
chain (Fig. 3a).

Simliarty, all Gy transfers between two vertices t and
t’ belonging to two Aifferent acyciic subgraphs (branches) of G
will be handled as a transfer between the two terminal vertices
usztandv 2 t’ of the new transfer chain (Fig. 3b). The same
holds for cases when Gy transfers occur between two vertices r
and r’ belonging to one or two cyclic Gy ({Fig.3¢). Clearly, the
shortest path W(rr‘|G1) should be selected as a transfer chain

in the latter case.



when one or more cyciic Gy are fused to the transfer
chain (Gy = Gﬁl then muiltiple (double, triple, etc.)
transfer chain or subchain could exist (Fig.3d). Sets (pairs,
triplets, etc.) of vertices K,K’,kK",...,mm’, m",..., etc.
located within the multiple transfer (sub)chains are equivatent
with respect to their distance to u and v

It follows from the foregoing and eqs. (4) and (5) that
the basic properties of the change in the Wiener number A W
upen the graph transformations under study are determined by the
dLfference 1n the distance numbers of the two terminal vertices
of the transfer chatin, d(u|G|) and d(v|G;). respectively. This
difference can be presented as consisting of two types of
contributions: the distances from u and v to the remaining
vertices in the transfer chain and those to the vertices in all

subgraphs G !

a(u(G ) - d(v|G ) = L (d(uK|G ) + E L L a(ut|@ )-
! ! KE Py ¢ 3 1fu tegy |

(14)
- E 4(VK|G ) - L E I a(vt|a )
KE Pyy ! 3LfL oreGy )

Here, K and t stand for an arbitrary vertex from the transfer
chain and from the lth subgraph linKed with the transfer chain
1in a vertex having position j, respectively.

The subgraph, G; = Gy , having J = 1 and | = 1 is denoted
for convenience with a different subscript L = 1’; 1t 1s not
taken i1nto account 1n the summation since by definition it does

not belong to Gj.
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Fig. 3. Iliustration of the fiexibility of the transfer chain
notion. New transfer chalns are formed so as to have
always terminal transfer vertices u and v 1n case of
G, displacement: a) from an internal chain vertex to
another internal chain vertex, b) from a branch vertex
to another branch vertex, ¢) from a vertex belonging
to one cycle to a vertex belonging to another cycle
or to the same cycle; d) triple transfer chain and¢ a
multiple transfer chain having two triple and one double
transfer subchains



3.2. Transfer chain graphs with subgraphs attached to the
chain by an edge (a bridge) or common Vertex

The first and third term in eq. (14) mutuaily cancel
because u and v are the two terminal vertices of Py, . The sums
of the distances from vertices u and v to all the vertices t in
atl bridged or spiro lLinked subgraphs Gb_.l and G‘n can on their
turn be divided into two contributions: the distances to the
respective transfer chain vertices K; and the dlstances from the

latter to each of the vertices within the subgraphs. The second

contributions are constant and vanish upon the subtraction in

eq. (14). One thus obtains for Gy = G’ and Gy = &%
a(ujG@ ) - d(v|G } = & L B {0(y-1}.
! 1 3171 teGy
. (ni + d(k t§@ )1 - [(n - J)n* + d(K t|G )}} (15),
i I} I i [] i 3 ! I
or simply:
d{u]G ) - d(VIG ) = B E (2 -n -1)n (16)
i i j I./t' ° I

Here nl; 1s the number of those vertices in
Gl which are not common with Py . For G;; = @Y, and G, =
=@y . ndy :ny andnd) = ny -t holds, respectively, ny
being the total number of vertices In Gy .

Eq. (16) can be uitimately simp!ified by takKing into account
the fact that the double summation in this equation runs over
the different varlables J and | which can be separated:

d(uj@y - a(v|@ = L (23 - n - 1) ? nin =
J LA

=L (2§ - np - 1).n’ (17)
" |



where n’; : L nij 1s the total number of vertices not
belonglne téﬂém in all subgraphs G attached to vertex K
having position ) in Py . When atl nly = n%l , then n’'; = n
(the total number of vertices in all subgraphs Gb ). When

atl nty = nf , thenn’; = n; - ;. s; being the total number
of Gﬂi . G = Gy = Gy which 1s attached to vertices u or v

1s excluded from the summation since G; f’Gl by definition
Froceeding from eqgs. (4) and (5) one arrives thus to the
generat equation (18) for the change in the Wiener number
occurring upon the transformation of the transfer chain graph H
into another transfer chain graph H;. More specifically, eq. (18)
refers to transfers of the subgraph G; = G;; which is connected
by an edge (a bridge) or by a vertex (but not by a common edge!)
with the transfer chdain subgraph Gy, the latter having
subgrarhs Gﬂl or Gﬂl » bridged or spire- linked to the transfer
chain Py , respectively:

aw! - W(HY ) - W(HY ) : (nj -a) B (2)-ny-1).n’; (18)
J

where a = 0 for 1. = b, and a = 1 for 1 = s. The number of
vertices in the subgraph G, = G; 1s dencted here by nj; itnstead
of np te avoid any confusion with the term n; in case of J = 2.
The case L = b refers to fragment transfers in acyclic,
branched cyclic, and bridged cyclic compounds whilst 1 = s
treats the spiro-cyclic¢ compounds which can also contain
acyclic branches or/and cyclic fragments linked by bridges
For exampies Lllustrating such applications of eq. (18) one may
g0 back to Figs. 2a to 2d. A more general example, lilustrating

eq. (16) 1s given in Flig. 4



Fig.4. Illustration to the application of eq. (18). Here

n“:6,a:o,n°:4.n‘i:4,0'3:3,11'3:5
(ny = 6, s3 = 1), N’y = 4 (my = 5 S = 1), awb = 12,
)l = 5%

For comparison with eq. (4): d(u]GI) = 53, a(v|a

Eq. (18) exhibits some of the properties of eqgs. (4) and (5),
and more specifically, Property 2.1 and Property 2.2a. Property
2.3 1s certainly no ionger valid in the same formulation because
the difference ln the distance numbers of the transition vertic-
es u and v was expressed by other variables. New properties
however, can be formulated or proved for the transfer chain
graphs.

Property 3.1. The value of AW deces not depend neither
on the structure nor on the number of subgraphs G) attached
to a certain vertex K; having position J in the transfer chain
Py but it depends on the position j, as well as on the total
number of those vertices 1n the these subgraphs, n’;, that are
not common with Py .

The proof of this property was actually given by deducing
eq. (17) from eq. (16), i.e. 1t results from the possibility
for a separate summation over the two variables j and L in
eq. (16).

It should be noted that unlike AW, the Wiener numbers W(H )



and W(H; ) depend on the number of subgraphs at each vertex.

Another property considers the mutual influence on AW of
the total number of vertices in the subgraphs attached to vertex
Ky . nj, and the position of attachment J in the tiransfer chain.
In the generait case, the subgraph transfer can result Iln Aw
positive or negative or zero, depending on the relative
contribution of J and nj. Some conctiuslions, however, c¢an be made
by using the symmetry of ) with respect to the initial and final
transfer vertices u and v.

Eroperty 3.2. The transfer of a subgraph G, or Gi,
between the two terminal vertices u and v of the transfer chain
Py Without changing the attachment type decreases (increases)
the Wiener number when for each pair of vertices x, y € Py ,
located symmetrically with respect to u and v, respectively, the
total number of vertices in the subgraphs attached to y is
larger (smaller) than, or equal to, the one for . In case of
equality for each pair (x,y) the Wiener number does not change.

Proof. Let the closed interval [J;, Jy] be divided

into two equal parts, as shown .n Fig. 5.

(n-1V2
=1 2 3 : nD-Z “0'1 M
ue—o—o0—vy - - - 5 -+ —O0—0—8V
- — v
I jZ Yy

Fi1g. 5. Division of the closed interval [Jy, Jy] into two
equal parts containing pairs of symmetricaily
located vertices Jy and J; (equality 19¢)



The following relations hoid:

LI PR S Y C )y + Ki)/2 = (g + 1)/2, (19a)
(ng + 1)/2 ¢ Jy & Jy = ny , (19Db)
Jy s Ju +Jy - Jx 0y o+ 1 - ) {19¢)

In case of n, + 1 = 2m = 2J,, vertex z exists and it 1s
always the center of the ([J;, Jy] lnterval. Due to the equality
2l; - Dy - 1 = 0 occurring for ] = J; in eq. (18) vertex z has a
zero contribution to AW and can be neglected in the summation
in this equation. On the other hand, all summands for j = )y in
eq. (18} are negative white those for j - Jy are positive. One

can then present eq. (18) in the form:

awl = W(HY ) - W(HYL ) =

= (ngy -a) E  (mg+1-2))(n'j- n’y ) (20)
1¢Jg $(ng +1) /2 ! :

where a - 0 and ¥ for L 2 b and s, respectively.

F1g.6. Illustration of the application of eq. (20). Here
n, =8 Jy = 1,2 3,4; Jy = 87,6,5 n’y = T <n’y = 8,
n'; =2 :=n', N’y = 2 <N’ = 4% n'y = 9 <N’y = 114,

AW = ny .15 > ©



Clearty, i1f for ait pairs of symmetrically lLocated vertices
(X, ¥), specified by (19¢), n'% 2 n“,l helds, then AW : 0O, The
equality for AW occurs when n'ﬁ 2 n’% hoids for each of the
pairs (%,y) whiie AW will be positive 1f at lLeast for one such
pair n’JT > n‘JI and tf, further, n'% 2 n‘h for the remaining
paLrs (X,Y¥); (See Fi1g.6 above)

Corotlary 1 to Property 3.2. Classes of pairs of transfer
chain graphs HY , HY: or HY | H%, exist with the same Wiener
numper

The necessary and sufficient condition for the existence
of such pairs of graphs is

A% & W @

It should hold for any pair of vertices X,y in Hy and H;
specitfied by (19¢).

The proof follows from the inserticn of (21) into (20). The
citass of isowlener transfer chain graphs .s thus definea
Evidently, such a pair of ilsowiener graphs possesses a certain
symmetry of the basic subgraph G;. A non-irivial example of such

pair of isowlener graphs HW and H% is shown in Fig. T.

H, H,

Fig. 7. A pair of transfer chain graphs having the same Wiener
numpber (Lsowiener graphs)
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Corotlary 2 to Property 3.2. Classes of pairs of transfer
chain graphs HY , H% or HY , H5 exist for which W 1s
constant.

The classes thus specified are termed i1sodifferent transfer
chain graphs

The procf of this corollary follows directly from eq. (20)
where the difference

an*, = n* -’ = (n’;+ K} - (n’y3+ K), k= 0,1,2,..
] f'l ‘J ,] R

can vary depending on K.

This corollary allows to reduce the calculation of the
change I!n the Wiener number :n ¢omplicated graphs to that of the
simplest case in the class, for which K = 0. Thus, the graph
shown in Fig.6 can be reduced to the simplest graph in this

¢lass having an‘’, = 1, An’; = 0, an’; = 2, and n’y := 2 (F1g.8).

Fig. 6. The simpiest graph from the class of 1sodifferent
transfer chain graphs to which the graph from Fig. 6
also belongs
Dealing with Property 3.2 one is tempted to suppose the
existence of a more generai trend for W(H; )} to decrease (or
for AW : W(H;)-W(H; ) to be positive) upon the fragment transfer
when the total number of vertices in the subgraphs G, attached

to the transfer chain vertices Located cioser to v (s lLarger



than that for the respective vertices located closer to u
(L n, > L n'y ). Such a trend actually exists hut it i3 not
a general property since the position ¢f 3 also influences

greatly AW. An exanmple Ls shown 1n Fig. 9.

Fig. 9. Iltlustration of the insufficiency of the inequatity
Lny > 1N n'] to produce AW > O: An’; = -2
1 H

An’, = 0, An’y = 2, An’y = 5 En'l = 19 ¥ Bn‘, & 6%
! 1
AW = -3 < O

3. 3. Transfer chain graphs with subgraphs attached to

the chain by a common edge

Consider now the more complicated case of transfer
chain graphs having c¢ycies fused teo the transfer chain Py
wnen some G = GH. (a monocyclic graph, or a cyctiic graph with
acycllc branches, or a cyclic¢ graph linKed with other cycle(s)
by a bridge, spiro-tiinkage or fusion) eq, (14) cannot be
transformed 1nto such a simple eguation such as eq. (15). The
first and third term in eq. (14) once again cancel each other
only part of the distances, however, from the transition
vertices u and v to the vertices t = t; € Gﬂl can be taken
via the same fusion vertex J or J)°. For the other part the

vertices t will be reached from u via ) whiie from v via



J’, or vice versa:

d(ut |G ) = d(ul|6 ) + d(at |G ) (2za),
1 ] 1 1 i
da(vt |G ) = d(vy|6 ) + a@t |6l ) (2epi,
| i | n
or d(ut‘ |GI) = d(uy’ |GIJ + d(_]".' |G“) (eacy,
I
d(vt |G ) = A(vy*|G ) + d(3't |6t (22dy;
l} i | ] i
and dut) ) = A6 ) + aut;afl) (23a)
1
AVEIG ) = AVIT|G ) ¢ au’qaf") (23p)

Proceeding from eq. (14) we have

a - d(uiG )y - d(le ) = E E £ [d(utiG }—d(vt'G )} {24)
] i 3 Lfl‘tEG“ 1

The second terms in the pairs of equations (22a)/(22b),
and (22c¢)/(22d) mutually cancel upon the subtraction in eq. (24)
as was the case of deriving eq. (15) from eq. (14). In subtracting
eqs. (23a), and (23p) however, no terms are cancelled. For these
reasons the quanitity A4 from eq. (24) will be determined in case
of one fused subgraph Gﬁ‘ as a sum of two contributions:
af - a4 + 4; . They account for the distances from the trans-
fer vertices u and v to the fusion vertices J and J‘, and from

the latter to the Gﬁ; vertices t F’P“ , respectively. Hence,

A| 5 L [d{uJ]Gl) + d(uJ‘|G‘) = dle'G1) - d[VJ’JGI}] (25)
techy
Then by substlituting d(thGj) = J-1, “(uJ'IG,’ =)',

d(VJ|G‘J z no—J. d(VJ';GI} H] nu-J' in eq. (2%), as well as by
summing over all vertices t in the fused subgraph G, having
the transfer chain vertex ) as a fusion point we arrive at the
equation:

4 = ([(y-v)n%y + (-1)n% ] - [in, -0 + (ng-J3)n'y1 (26)

Here n% and n", stand for the number of vertices t € Gfy



- 29 -

t f/fﬁ, whose shortest paths (distances) from u and v pass via ]
and sumiiarly, oY , and n'p ' stand for the number of those
t that are reached via J)’. By summing both pairs of these
quantities we obtain the total number of vertices in Gﬂl 4 nﬂ
which do not belong t¢ the transfer chain. Denoting those
which belong to the Latter by K = 2,3,..., as well as the
number of all vertices in &f by Nl we nave

o¥ o+ nﬂ» A n“ + nu- z nﬂ = Nﬂ - K (27)

Let us further divide each of these four quantities into
two contributions: the respective number of vertices in the
fused cycle (superscript ¢) and 1ts branches (superscript b):

o+ Y SO LA VLS BRI ¢ LA VLA

(28)
2

o 5 n',, = {nnjfr H’]"c]' )+ (n'l.b], 'n'uh“. )
The sum of two first terms in eqs. (28) equals the total
number of vertices in the cycle C, which has K vertices common
with the transfer chain Py
n“", ” nl.:‘] = nMJ, + n'ﬂ» = N - K (29)

Denote also the sums of the two second terms in eq. (28)
by o’ and nP. which thus represent the number ¢f all branch
vertices the shortest paths (distances) to which frem u ana
v pass via ) and via ), respectively:

ntb, + ntb) : nb ;o onbb, + nhb, : nb, (30)

Making use of egs. {(&7) to (30) we obtain from eq. (26)
after some transformations:

Ay : [(J+J")(Ng-Kj + gnb + gnbp - (ny+1)nf) ) (31)
Now, adding teo and subtracting from eq. (31) the term (j+1’).
.(n% + nﬂ- )/2, and taKing Lnto account that

nh + nﬂ- 3 EnL% 2 E(NH - M) (32),

where nf®  1s the totai number of all vertices in <
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which do not belong to Cp, we arrive at the final expression
for 4
A = (3 + 3= my-tnfp o+ r-g)mby - nbp e (33)
In deriving e€dq. (33) it was ailse assumed that J’'»>) always
ho Lds.
Determine now the term 4, emerging from eq. (24) for one
cyciic fragment Gﬁl fused to the transfer chain. This term

accounts for the distances from the two fusion vertices J

and )’ to those vertices t € GH‘ it }/P“ . for which

d(J’LIG}l ) ﬂ d(J’t|Gﬁl). The terms accounting for the remaining

vertices t € af |, t ;'P . for which d(Jt|G ) = dqy’tjaf )
] i 1 w it il

mutually cancel upon subtracting the pairs of egs. (22a,b) and
{(22¢,d) as follows from eq. {24). Thus one has

A = E tagat)et ) - aprepet ) (34)
¢ tEGf“ i i

Part of vertices t belong to the fused cycle Cp. They will
be denoted by t’. The remaining t vertices beiong to the Ca
branches which coutd be acycliic, as well as cyclic ones. Denote
this subgraph of afy by Cc’;, : Gfy \C,. One obtains thus

d(Jt{Gf )] =z d(Jt"C ) + d(t‘t'c‘ )
I o b (35)
diygrt|al ) = a@ e e )+ dertc )
I ] ]

Clearly, the second terms in eq. (35) vanish upon the
subtraction of eq. (34). On the other hand, due to the bilateral
symmetry existing i1n Cp with respect to the fusion vertices
J and J)’, the t' vertices divide into two groups, t’y and t’;
for which the following hoids:

a(yt’ |C ) = d('t’ |C ) (36)
(S | 2 'n

Hence, one obtains

a4 = L [agst’jc ) - a(3’t*|C )in, (37)
T tEG, 0 bt
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wnere ng  stands for thé number of vertices t € C’y Ln the
pranch(es) attached t¢ vertex t’ € ¢, If a second cycie C"y or
more cycles are fused to ¢, in vertuces t';, t'p, t'3,...,t7,
then ni» equals theé number of those vertices in C", that are
cluser to vertex t';, than to the other fusion vertices.

By summing eds. (33) and (37) one arrives thus to the
equation for the difference 4 between the distance numbers
of the transition vertices u and v which 1s due to the presence
wf the subgraph Gﬁl fused to the transfer chain Py

ap = Qryr-ng-nnf o+ (r-gy by -0y g2 .

£ by [a@it’|c' 3 - a@y’t’|C ))n (38)
tien [ n v
]
Evidently, 4y = O when no Gy Ls fused to Py , since in

this case in eq. (38) 3" = ), nﬂ = 0, and ny+ = 0. On the other
hand, when nﬂ Ls repitaced by nﬂ or n% or generatly by n'y, and
J ¢ J', the first term in eq. {38) transforms into (2)-ip-1)n’;.
Thus, eq. (18) obtained In the foregoing for transfer chain
Fapns naving <nly bridged o SpLre-iinKed subgrapns Gy o may

be regarded az a specific case of the mere generai equation (39)

which comprises atsdo the cases of fused subgraphs:

awt oz w(HY ) - W(HY ) - (ny -a) B L (J+d’-mp-1)n’y 4+
3 Lft'
+-nw o -nP a2+ B L £ A€ ) - (39)
i 3 Jijflil[ b fi n

- 4t (e an )]
a s
where a : O and t for L - b and &, respectively, and J = }‘, for

Gy = Gdy  or Gy

The third term in eq. (39) takes Lnto account alsc the
the possibility severat G; to be fused at the same vertex J,

as well as several 4; to be fused at different transfer chain



vertices ). The superscript 1 here refers to the transferred
subgraph Gy , L.e. edq. (39) is not applicable te transfers

of a fused G;; but it i1s of use for transfers of any bridged
or spiro-titinked Gy along the transfer chain Py which can be
bridged or spiro-linked or fused to any simple connected
subgraph GN (acyclic or cyciic covne). An example of the

application of eq. (39) Ls given in Fi1g. 10

a)

F1g.10. Iltlustrations of the application of eq. (39): a) the

general case: my = 7, J = 2 J' = 5 m = 2,

nf = 10, ng : 4, ny = 1, nbp : 2+4 = 6, nd - 1+3 = 4,
t’ = 9, 10, n'g = 1, n'ypy = 1, respectiveiy. For ny = 1,
AW = -25; b) the specific case when ed. (29) reduces to
eq. (18): 3 = &, 3" = 5 ny = & n = 1; for oy = 1,

AW = -T

Eq. (39) reduces to the much simpler equation (18) not only
in case the fused subgraphs are missing Ln the transfer chain
graphs Hy and Hy. Due to symmetry existing for multiple
transfer chains, J':] always holds, though ) = Jy (See Fig. 3d)

Thus, the simple eq. (18) describes also these rather complLicated



graphs. Finally, in a sitightily moedified form eq. (18) can be
deduced from eq. (39) for the case when Gﬁl 1s a fused cycle

naving no other branches than those attached to transfer

chaitn vertices. nf. : nf) : ng - O holds here and one thus
obtains
awPlsl < (ny ~a)E E (3+)°-my -1)nm’ (40)
] l/l‘
in eq. (40) { 3}’ 1s taKen only for those ) and L for
which Gy = Gfy .
Eq. (39) do not possess Property 3.1, specified in this

section for eq. (18), due to the second and third term in it
which depends on the subgraph structure. This property is,
nhowever, attributed to graphs with muitiple transfer chatn

as well as for graphs having branches attached oniy to
transfer chain vertices since in these cases the second and
third term in (39) vanish. Property 3.2 in general does not
hold except L1n some very specific cases, due tc the asymmetry

of J and j' with respect to u and v.

4, CONCLUDING REMARKS

In the search for a more general graph-theoreticai approach
to the description of molecular rearrangements the classes of
transfer graphs and transfer chain graphs were introduced in
this study. The change (n molecutar topology cccurring upon
such rearrangements Ls evaluated by the change in the metric
properties of moiecuiar graphs and, more specifically, by
the change in the Wiener number , AW . Two types of
dependences were cbtained for AW. The first one g.Lven by

eqs. {4) to (6) expresses the Wiener number change by means of
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the distance numbers of the two atoms in the basic¢c molecutar
fragment to which the transferred fragment 1s attached before
and after the motiecular rearrangement. Alternatively, eqs. (18},
(20), and the most general eq. (39) present AW as a finction of
more speclfic structural parameters:. the total number of atoms
i1n the transfer chain, i1n the transferred fragment, and in

ail fragments attached to a certain transfer chain atom, the
position of the latter being also of importance. In case some
fragments are fused to the transfer chain, the change in the
Wiener number depends also on the distances between the
terminal fusion atoms and those atoms from the fused ring which
are not included in the transfer chain, as well as on the total
number of atoms in the side-chains attached to each of these
ring atoms.

A number of properties and corotlaries proved for aw
showing e.g. that when some fragment i1s attached to the transfer
chaln of atoms by a bond (a bridge) or a common atom (a SpPiro-
linKkage) 1t 1s not 1ts specific topology but its total number
of atoms which i1s of importance. Of special interest are the
necessary and sufficient conditions for two graphs to have
the same Wiener number (isowiener graphs) or the same difference
in their Wiener numbers, i.e. for two molecules to have the same
total topologicati distance or a constant difference o¢f these
topological characteristics. Differing from the general condiLti-
ons for two graphs to have the same metric properties [6], which
are based on vertex neighborhood considerations, our conditions
are formulated proceeding from exact equations for the Wiener

number. They include some more specific parameters such as the
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total number of vertices in the graph fragments. The conditions
for two graphs to have the same Wiener number presented in this
work actuaily refer to cases not covered by the SKorobogatov
conditions (6], Ll.e. they refer to pairs of graphs having
different metric properties except the total distance of the
graphs. Our approach also allows to simplilfy the calculation of
the difference in the Wiener number of two chemical structures,
as well as to generate readlly classes of compounds having the
same Wiener number or the same difference in this number.

The main Lmportance of the equations derived for the Wiener
number 1s, however, in the possibillty they offer for ccmparison
and ordering of chemical structures and first of aLl of lLsomeric
compounds. Most of Lsomeric molecules may Ln principle be
interconverted by means of one or a series of molecular
rearrangements in which a fragment Ls transferred from one
part of the molecule to another one. Typical rearrangements
might be expected to be associated with a regular change in
the Wiener number. One thus arrives at a classiflcation of
molecular rearrangements on topological basis making use of
generalized structural rules. Some examples of such fragment
transfers which change the molecular branching are shown in
Fig. 11 making use of moliecutar hydrogen-depleted graphs. The
basic part of the moliecute in Figs.11a to 114 is taken to be
acyclic, branched monocyclic or fused polycycllic, spiro- and
bridged polycyclic, respectively. The fragment R to be

transferred might be acyclic or cyclic one.



a)

Fig.11. Itlustration of molecular branching treatment. Molecular
rearrangements upon which the transfer of fragment R
occurs in branched: a) acyctlic, b) monocyclic or fused
polycyclic, ¢} spiro-cycllic, and d) bridged polycycliic
compounds

A detailed analysis of molecular branching based on the
present study will be given in a subsequent publlcation [4C].

Bearing in mind that the same trend is observed [35] .in the

typical molecutar rearrangements for the change in the Wiener

number and numerous thermodynamic and other physico-chemical
propertliles one may expect such a generalized treatment of
molecular branching to result in a method for finding
regularities ln molecular propertles, as well as for property
calculations. Similar treatment of molecutlar cyclicity will

be done Later [42] proceeding from eq, (6). An extension of

the approach to crystal and polymer modellings (s alseo in

Progress.
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