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ABSTRACT: ‘'his note sives a coustruction method tor those
hexugonal systems which may only have tixed single bonds but

never have rixed double bonds,

1. Motation and Derinitions,

A hexaponal system ds defined as usual (1] Let Bobe a perfuct
matching ot a hexuponal system Ho An M-al Lernating cycle is o
cycle whose edges are allernately in boand B(H) =M, where B(H)
denotes the edpe sebt of He An edpge e of Hois culled an M-double
bond if e bL2longs to M, otherwise an M-single bond, If e is an
M-double bond for any pertect matching m, ¢ 15 culled a fixed
double bond, Similarly, if e is an M=-single bond ror any perfect
matching M, @ is called u lized sinﬁ]c bond, Since the edges
adjacent with o lixed double bond wust be fixed single bondy,
if H has a fixed double bond it wust have a fixed single bond,
But the reverse is nob true, for example, Prolate rectangle (1)
hexagonal systewm,

For the definition:; ot cut, p-cut and z-cut segment, one can

find thew in rer. (2] , (5] amd (4) respectively,
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In the rollowine, we alwiys assume that I is a hexapgonal
systewm with ot Jeast one perfecl matchong, Let C be a cut or
g-cut or z-cul segment o He Then, the graph obtained frow 1l
by deleting a1l the edpgess intersected by € has exuactly two

components, 110 bolhe the two components have perfect matchings,

we say that C has property ().

11. Some Basic Theorvms,

For convenicuce, we always place a hexagonal system in such
o monner that its every hexaron has two edges parallel to the
vertical line., The tollowing theorem gives a description for
those hexuponal systems which may only have fixed single bonds.

Theorem T: Let H be a hexuronal system, Then, 1l has no fixed
double bonds iff, of the three types of cut sepments, I may
only have cul segment with property (%).

P'roof: If Il has g-cut or z-cut sepment with propelty (»), 1
must have rixed (1ou'h].c bonds, Thus, if H has no fixed double
bonds, Il may only have cubl scpgment with property ().

Conversely, we wish to prove that, of the three types of cut
sepments, if H may only have cul sepment with property (%), i
does not have rixed double bonds. Otherwise, 1l has a fixed
double bond. Then, by lewma 2 ol ref,(5), there must be a fixed
double bond lyimj on Lhe contour of l, Suppose e is such a fixed doubld

bond of l. Let the edpes e and a hexapon S0 be

11t ee Sy

shown as in Fig.1, wheroe Gy eee, e ure fixed double bond , e
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s nol @ tixed double bond cud does not belong Lo H. Let

20

hesirons g, Bty i be ulso shown us in Fig,1,

DT

Case 1ethe hiezapon o does not belong to H, 1t S belongs to i,
a p~cubt sepment with property () can be found. Otherwise, Sy
must belongr to 1 sincee 5 does not belong to i, If 54 belongs Lo
i, @ v=—cul sceoment with property () con be found, Otherwise, a
p-cut sepment with property (») can be found, All of the above

bring about contradictions with the hypothesis that I may only

have cut sepment with propecty (a).(see Pig.2).

5., belongs to . 5., does not belong to both Sy and 59 do
. 5 belongzs to . not beloug to H.
I E

Case 2:The hexapon o belongs Lo H. lLet hexagon 34 and edges f1,f, i

... be as shown in Pic. 2.
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By Jemwie 1oof vers [9), one ol the edpes o and boshown in

Fips s must be o Fided i le bond of Il 10 e is ized, LI

must be Uixed double bond, o conlradiction, ‘Thus b ois o rixed

sinple bond, This iwoies thal x',' is a rixed double bond of .

Let hexopon s, ond cdpes ¢ and be also shown in i, 50 11 s,
4 7

1

one of ¢ and d must be o fixed single bond ( apgain by lemma 1

does not belowr to I, o is on the contour of Il. Otherwise,
of 1el %)) 10 ¢ is vized , the edge of 5 adjacent with both
aoand bomust be Fixed double boud since b is a Lixed sinple
bond, ‘This dwplics that ¢ is o fixed double bond, again i
contradiction, Continue Lhe above process. At last we arrive
at an edpe 1'1{ which 10 o ixed double bond lying on Lhe
contour of Jt and o hezopon o' which does not belong to H (see
Fig.s). 1t o dovs not bedongs to H, a p-cut segment with
property (+) can be tound, Otherwise, a z-cut or p-cut segment
ville property (2) con be round. Apain, oll br Lhe nbove bring

aboul contradiclivi: vitle Lhe hypolhesis Lhat 1 way only have

cut sepment with property (). (nee PPig.h).

Sy does not belony ol 5 Ledongs Lo Il 5y belongs to I, M

jome 5, does not .

Pip b



- 285 =

Up to now, onur proor in completo,

Theorem 2: Leb 1 be o hexagonal system without fixed double
bonds, Then, an cdire o of Il 1g o fi<ed single bond iff I has a
cul sepment wilh property (+) such that e is intersected by the
cul. segnent,

Proof: Obviously, it I has o cut sopgment with property (»)
such that ¢ 15 inlersected by the cul segment, e must be a fixed
shigrle bond. Conversely, since e is a fixed single bond, by
theoraem & of rel (W) we know that I hivs o cut or g-cut or i-cut
sepment with property (+) intersecting . By the theorem 1, H
must have o cul sepwent wilh property (*) intersecting e since
II hivs no rixed double bond:s and therd fore no g-cut und z-cut
wilh property (r),

Bearing in wind Lhat o ron=tized bood ( neither (ixed double
nor fixed single ) or I must be on an M-alternating cycle of i,
where Bods o pervect matching of I, We have that

Theorem 5: Let Y be o hexxngonal system, C be a cut or g-cut or
u=cut :;e(;m::nt of Il with property (»). benote by ll1 and l[2 the
Lwo components of the graph obtained from H by deleting all the
edpes intersecled by C. Then, o fixed single (double) bond  of
i, (112) must be @ rixed single (double) bond of I,

I'roof: Obvious,

Theorem /4i: Let M be a hexagonal system without fixed double
bonds, C und C.' be two cut sepwents of H with property (%), Then,

if C is nol parallel to C', the hexapon whose center is the cross
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orf C and C' must do not belong to ll.
Proof: Otherwise, we cion find a g-cuat sepment ol il with property

(*). Hence, Il has a Tixed double bound, @ contradiction,

111, Construction Method For Hexaponal Systems Without Pized
Double Bonds,

Recall that a normal hexapgonal system 15 a hexaponal system whose
cuch edpge is a non-fixed bond, In other words, its every edpe is
un an M=alternating cycle or it, where M 15 a perfect malching of
it, The term, “norwal® is trom ret, (1]

Our construction wethod is based on the cohistruction method for
normal hexagonal systems given in ref,(5].

CONGTRUCTION METHOD:

1. If H has no fixed bonds, that is, H is a normal hexaponal
system, we can usc the method piven in ref, (6 to construct it,

2. 17 Il hus only rixed single bonds, we u_;xl- the following
induction method to build it up, ‘The fundiawental elements are
normal hexaponul systews, Suppose that we have built up all the
hexapgonal systewms with n normal subhexagonal systews,  For n+l, we
tuke one norwal hexupgonul system H“H and one bulltl up hexagonal
system H with exacly n normul subhexupgonal systems Il.l,ll‘,{, ...,lln.
FFor any orientation of l, Jjoin some valleys on the bottom of ”n+1
with some peaksion the top or II such thut no overlapping occurs

and the joined peuaks of H are only on one of 1{1,II and ”n"

PIREE
Then the resultant hexugonal systew I has only lixed single

bons and n+1 subhexagonal systems Hy, oo, Ho 1 .
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Fig.5 is o example to demonstirate our construction method, where

n=3 and H“f1 = ”h‘ The vertical heavy edges are newly added.

Theorem 4; The hexagonul systews constructed by our CONSTRUCTION
FMEETHOD have not fixed double bunds, On the other hand, any hexia-
ponal systems with oup rixed double bonds cun be constructed by
our CONSTRUCTLION HETHOD.

Proof: The forwer part is obvious und all the edges connecting
two normal subhexagonal systems are fixed single bonds,

Now we prove Lhe latter part. Suppose l is a hexaponial system
without fixed double bonds, 16 H does not have fixed single bonds,
step 1 can be used to build up it, Otherwise, by theorew 1 H only
has cut segment with property (*). By theorems 3 and &, there must
exist a cut sepgment C with property (%) such that one of the two

components of the graph obtained frowm Il by deleting all the edges
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intersected by € is a normal suble-zaponal system of H, denoled

by H', and the olher is o subhexap nas system of H with at least
one perfect matching, denoted by H-:', By theorem %, l=-H" does

not hiave tixed double bonds. In the following, we only need to
show that 1Y hasg vvl'ticz:.:; Joined to only one normal subliexagonal
system of H-H". Otherwine, let H1 and ll,,? be two normal subhexaponal
systoems of =Y which huve vertices joined to sowme vertices of 1Y,
Place H in such o marner -Lhat the cul segment C is orthopgonal to
Lthe vertical line, Clearly, there exist a fixed single bond ¢ of
H=H" between H1 and ll:,. By theorem 3, e is also a fixed single bond
of I, From theorew 2, 16 must have a cut sepment C' with property
(*) intersecting v, and H1 and H;3 are in different components of
the graph obtained rrom H by deleting 11 the edges intersecled

by C'( see IFigz.6), Then, € must not be parallel to C'. Since U
does not have holes, Lhe hexapon whose center is the cross of C
and C' must belong Lo M. By theorem 4, we gt a conlradiction
with the hypothesis that If does not have fixed double bonds,
Since =" does also nol have fixed double bonds und has less
nuwber of normil subhexaponul systems than that of H, by induction

we known that our conclusion is Lrue,
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Bemark 1 Let I obe o B3 weth ol least one perfect matching.,

Wee conlract every normial subhexiponal system of Il into a
vertex, and two normal subliexagonal systems are joined with

anedpe LU there are soune cdpes belween them, Then, it is
nol dirfticult to see that H has not irxed double bonds iff
suodetined praph From [ 1s o tree,

Remarts 2t Thoush here we pive o construction method for
Lho:ce hexapgonal systems which do not have any fixed double
bonds, 1t seems difficult ror us to pive a simple construction

wethod tor hexaponal systemns with (iced double bonds,
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