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ABSTRACT

In the present paper, some 1interesting topological properties
of normal benzenoids and coroneids are given and a simple
method, which 1is used for determing that a benzenoid or a

coronoid system is normal or not, is proposed.
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Kekuléan benzenoids and coronoids are divided into essentially
disconnected (which have fixed double and/or single bonds) and
normal (which have no fixed bonds)1'2. In the present paper,
coronoids includes single and multiple ones.

Consider a benzenoid (or a coroncid) drawn such that some of
its edges are vertical. A peak P 1s defined as a vertex lying

above all its first neighbours, and a valley V is a vertex lying
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; a-
below all its first nerghbours ﬁ.

In the classical work of Gorden and Davisonj, the following
observation was made: 1n avery Kekulé structure of a benzenoid
there 1s a unique monotonous alternating path, {called a perfect

P-V path or a conjugated P-V¥ pathB'6

), connecting a peak with a
valley, and starting with a double bond. This 1s true for all
peaks and all valleys. The pertinent monotonous alternating
paths are mutually independent and form a perfect P-V path
system.

Inq, Sachs established a one-to-one correspondence between
Kekulé structures and perfect P-V path systems in benzenoids
{or coronoids).

Clearly, for a given position of a Kekulean system, in order
to change a perfect P-V path system into another, we only need
to change some segments of P-V paths, but not the starting
points (peaks) and the terminating points(valleys).

In a given Kekulé structure of a benzenoid or a corono:d, 1f a
circuit with h edges has h/2 conjugated double bonds, then the
circuit is called a conjugated c1rcuit7_9_ If the extremely
right vertical edge of a conjugated circuit is a double bond
edge, then this circuit is called a right conjugated circuit
otherwlse, 1t s called a left one. If one exchanges the double
bonds and the single bonds of a conjugated circuit,then the
right/left conjugated circuit 1i1s changed into a left/right one.
Such a transformation is called a right-left transformation of

the conjugated circuit (simply, a RL transformation).

In the present paper, whenever a Kekuléan system is mentioned,



it involves a Kekuléan benzenoid or a Kekulean coronoid, and the
following theorems hold not only for benzenoids but also for

coronoids.

Theorem 1. By executing a seriers of RL transtrormations., any
Kekulé structure K of a Kekuléan system G can be obtained from a
given Kekulé structure KO of G,
Proof:

1) At first, consider two special cases in which K 1s different

from KO only in one P-V path.

Case R). The difference between Ky ana K is only in one

segment of a P-V path, say that the segment a_a - a

c+177 qcsre@creri

in the P-V path a a la

1a2--~ acac+1-~- ac+eac+e”v-- s and at are

1

coincident with a peak and a valley, respectively) of Kﬂ 1S

different from the segment a b b

By in the P-V path

a
c+e cte+]

b

By B e br:i»zm bcfeaci-e*‘l h

S ap of K,where Tscet-3; 2. e t-c-1.

Clearly, in K there exists a conjugated circuit C,

o]

uca;-'"‘ac+eac+e+'bc*ebc+e+l"'bc+lac' By executing the RL

transformation of C, K, changes into K (See Fig.1).
]

Fig.1 Changing of P-V paths
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Case B). The difference between Ky and K involves several
segments of a P-V path of KU' Similarly to A}, by using RL
transformations, we can change the segments of the P-V path 1in
KO 1nto the same as these in K, one by cne,

2) For the general case, by using RL transformations, a unique
special Kekulé structure X in which all the conjugated cir-
cuits are right can be obtainede’g. Obviously. in the ocbtained

Kekulé structure Ks, all the P-V paths have been shifted to as

left as possible. Starting from the extremely right P-V path

in Ks' from right to left, using the method in 1), we can

change the P-V paths in Ks into the same as those in K, one by

one. BEach transformation is only concerned with one P-V path.

Theorem 2. For a Kekulé structure KO of a Kekuléan system G, 1if
an edge 1s on a conjugated circult, then 1n any Kekulé structure
K, the edge 1s also on a conijugated circuit.

Proof:

Suppose that an edge ab is on the conjugated circuit C, of K

0 0°
According to Theorem 1, by using RL transformations, any Kekulé
structure K can be obtained from KD' Consider a RL transforma-
tion of a conjugated circuit Ct of KO' 1f ab is a common edge of
C0 and Ct' or tf CO and Ct have nc edges in common, then after
transformation, the edge ab is still on Ct' If CO and Cy have
edges in common other than ab, then after transformation, the
edge ab belongs to the new conlugated circuit which is composed

of all the edges of CO and C, except their common edges. Q.E.D.

(See F1g.2).



Fig.2 TIllustration of Theorem 2

From Theorem 2, we immediately obtain:

Theorem 3. For a Kekuléan system G, an edge 1s a non-fixed bond,
iy and only if the edge is on conjugated circuits in a Kekulé

structure of G.

An alternative statement of this theorem is as follows.

Theorem 3a. For a Kekuléan system G, an edge is a fixed bond,

if and only if it does not belong to any conjugated circuit in a

Kekulé structure of G.

Because a normal Kekuléan system has no fixed bond, we imme-

diately have Theorem 4.



Theorem 4. A Kekuléan system G 1= normal 1f and only if all the

edges are on conjugated circuits i1n a Xekulée structure of G.

Now, we give some other theonrems about normal systems.

Theorem 5. A Kekuléan system G is normal 1f and only 1f for any
basic clrcult Cofhexaqon or internal perimeter of a benzenoid or
a coroncld} there exists a Kekulé structure K ot G where C0 1s
conjugated.

Proof:

1) Consider a Kekule structure KD Gf Kekul ran system

G. A basic circuit Co 15 not conjugated 1in KO.A';nrdlng te Theo-

rem J. an edge a1b1 on €. mast 2along Yo a conjugated circust,

0
say C}. CO and o have edgesn a*at-l‘at-idt—z'""asa!’dlbl’n1br

b b (.1 and 5.1 :n coemmen. Obviously, both a, and b_ are
s = - >

vertices of degree three. Jonsider vertesx k_ . There are three
]

edges, b5 ]bg S.b. . Bhd ard, terminating on » . Among Them
o = 5

b b 15 common edae of CJ and €,, and b b and o belong

s-1"s s+1

to C0 and ij raspactivaly. (See Fi1g9.3). There exist tws cases.

AR) If b, ,b_ is a siagl# bond, ther s5_+ and b b are a
178 s s s+

double bund and a single bond, respectively [See Fig,lbj.

B} If b, ,b_ ts a dcuble bond, then both b d and b_b
t 3 27541

are =ingle bonds :See Fi1g.3a;
For the first case, accuording to Thecrem 2, hsbs*T is on a
conjugated circut, say,C.,. The edge bsd 12 also on Cz. Executing
3,

RL transforwaticn to Cz,we can obtain another conijugated circuit

¢, which 1s composed of the unoverlapping edges of C, and C

1 1 7l



includ:ing not only edges atat—l’""a2a1’alb1'b1b2’""bs—1bs but
also bshs+], {probably, and some other edges of CG).

For the seccend case, we cane find another conjugated circuit
Cy tn X, which contains not only the edges LT L TR L NP

aza‘,albx.b1b2....,bs_1b5 but also bsbs‘1.
To sum up, for any cases,using RL transformations (if
necessary), we can make more and more edges of C0 to be on a

conjugaled circuit. Finally there exists a Kekulé structure K 1n

which C, :tself forms a conjugated circuit. (5See Fig.3)




2) Tnversely, 1f frnr any basic circurt C there exizts a

0
Xekulé structure K ot & where CO 1= a conjugated circult, then
according to Theorem 3a, G has no fixed bond edges. And so G 1s

normal.

By the way, Thecrem S5 1z useful for investigating the sextet
1
polynom:ial which 1t proposed by Hosoya’q. I'm tact,firom Theorem

5, we 1mmediately obtain the following theorem.

Theorem 6. The coefficilent of the term with first power in the
sextet paolynomial of a normal benzenoird G, whrech has no
sup5rsextet]0 in any Kekulé structure of G, 1= gqual to the

number of hexagons in G.

Proot:

Accoding bo Theorem %, for any hexagon CO there s a fekulé
structuape of G, -n *0 1o oaantugated. sing RL bransforma-
tions, we can ohan.oe ”T tnto A propasr sextet {right coniugated
Tix-membered <i1rciit) and the other condugated hexagons into
non-proper sextets fleft conjugated six membered circurts).

s1milarly to the pronf of Tneorem 2 in , we =an prove that such

a Kekulé structurs s unigue. 50 theorem & holds.

Theorem . A Kekuléan =system G i1z normal 1f and only :f there
axists a Kekulé structure Ke where the external perimeter Cg of
G 1s a conjugated circuzt.

Proof:

1) The proof of necessity 1s f{ully analegous tc that in



Theorem 5.

2) Now consider a Kekuléan system G having a Kekulé structure
in which the external perimeter Ce 1s conjugated. Suppose that
in the interior of Ce, an edge ab is a fixed-bond edge. In the
interior of Ce' an alternating path passing through the edge ab
can extend to and terminate on Ce' The path divides Ce into two
parts. Each part with the path forms a circuit. There seem to be
two modes in Fig.4. Mode A 1is impossible, because both of the
two circuilts have odd edges. In mode B, one of the two circuits
1s conjugated. It is 1in contradiction with the supposition.
Hence, 1in the interior of C, there are no fixed bond edges, and

G is normal.

Corcllary. A bezenoid (or a coronoid) system is normal if and
only if the remainder G' produced by deleting the external

perimeter C_ of G is Kekuléan (one-factorable).

Made A Mode B

Fig.4 Illustration of sufficiency of Thecrem 7



to

[

&=
'

It 1s convenient to use Theorem 7 and its corollary for deter-
ming that a benzenoid or a coronoid system is normal or not. For
using the corcllary,we need not to know beforehand 1f the system
1s Kekuléan or not.

For example, in Fig.5, the system G, is not normal, because
the remainder obtained by deleting the external perimeter of G1
1s non-Kekuléan; and G2 is normal,because the remainder obtained

by deleting the external perimeter of 62 1s Kekuléan.

: = Kemaindaeg
it Remainder 2 i

Fi1g.5 A normal system GZ and an essentially

disconnected system G1

Besides, we have the following results.

Theorem 8. In the interior of any conjugated circuit of an

arbitrary Kekulé structure, there are no fixed-bond edges.

Theorem_ 9. If a Xekulé& benzenoid ({(or coronoid) G has some

fixed-bond edges, then the remainder system produced by deleting



[

all the fixed-bond edges of G must be a disconnected system and
must contain more than one normal ccmponent.
Proof:

The proof 1is analcgous te that of sufficiency of Theorem 7.

Accoding to Theorem 7, on the external perimeter of G, there
must be fixed-bond edges. Suppose that deleting all the fixed-
bond edges in G,we obtain only one normal component N. According
to Thecrem 7, there exists a Xekulé structure of N in which the
external perimeter of N is a conjugated circuit. Thus, all the
fixed-bond edges of G are outside of N. An alternating path of
fixed-bond edges can extend to and terminate on the external
perimeter of N. The path divides the perimeter into two parts.
Each part with the path forms a circuit. One of the two circuits

is conjugated. It is a contradiction. Q.E.D.

According to Theorem 9, an essentially disconnected Kekuléan

system must contain two or more normal components N1,N2,...,N5,

which connect with each other by fixed bond edges.

Dencte the numbers of Kekulé structures of NI.NZ,...,NS by
K{NI)'K(NZ)""'K(NSI’ respectively, and the total energies of
n -electrons in N?’NZ""’NS by En(N1),En(N2),...,E“(NS},

respectively. Denote the number of Kekulé structure of G by K(G)
and the total energy of n -electrons in G by Er(G)‘

Then, for any essentially disconnected Kekuléan system, we

have

K(G) =

[t

K(Ni)

;
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