

BOLINDS FOR THE LARGEST EIGENVALUE IN ALTERNANT HYDROCARBONS A TOPOLOGICAL APPROACH

Lemi Türker

Middle East Technical University Department of Chemistry Ankara Turkey

(Received: April 1989)

Abstract. Certain topological upper and lower bounds for the largest eigenvalue of alternant hydrocarbons are derived.

1. Introduction

The eigenvalue-eigenvector problem of the adjacency matrix of a graph has attracted the attention of graph theoreticians over a considerable period of time1. For certain classes of graphs, within the framework of Hückel Molecular Orbital (HMO) theory , the graph spectrum can be solved in a closed analytical form, most frequently using the symmetry properties of a graph². Thus, graph spectralstructural analysis was carried out analytically for rings³, chains 3, stars and other trees 4,5,6 etc.

The interval in which the eigenvalues X_i graph lie is limited and given by Frobenius theorem^{2,7}.

 $-d_{max} \leqslant X_i \leqslant d_{max}$ j= 1,2...N

where, d_{max} is the maximal vertex degree in a graph. Therefore, for the Hückel graphs 1,2 the whole spectrum lies in the interval from -3 to +3. In the linear polyenes and annulenes the eigenvalues lie in the interval from -2 to +2. The largest and the smallest eigenvalues of a molecular graph have been already investigated in some detail. 8,9 In the present study ,topologically dependent alternatives of the abovementioned bounds are given.

2. Theory.

Suppose, G is an undirected planar graph, having r rings, e edges and N vertices such that the degree (d_i) of every vertex in G is $1 \leqslant d_i \leqslant 3$ (i.e. G is a Hückel graph (d_i)). Furthermore, let N be an even number and P(X) be the corresponding characteristic polynomial,

$$P(X) = X^{N} + a_1 X^{N-1} + a_2 X^{N-2} + \dots + a_{N-1} X + a_N$$
 (1)

For alternant hydrocarbons the graph eigenvalues appear in pairs $+x_1$, $+x_2$,..., $+x_{N/2}$ and P(X) can be written in the form of.

$$P(X) = (X^2 - X_1^2)(X^2 - X_2^2)....(X^2 - X_{N/2}^2)$$
 (2)

We assume : $X_1 \geqslant X_2 \geqslant \dots \geqslant X_{N/2}$. The quantity we are concerned with in the present paper is the largest eigenvalue, X_1 . Within the HMO theory X_1 corresponds to the

energy of the lowest occupied molecular orbital. It is easy to see that the following equations $hold^{10,11,12}$,

$$e = \sum_{i=1}^{N/2} x_i^2$$
 (3)

$$\mathbf{a_4} = \sum_{\mathbf{i} < \mathbf{j}}^{N/2} \mathbf{x_i^2 x_j^2} \tag{4}$$

$$e^2 = \sum_{i=1}^{N/2} x_i^4 + 2a_4 \tag{5}$$

$$a_6 = -\sum_{i < j < k}^{N/2} x_i^2 x_j^2 x_k^2$$
 (6)

$$\mathbf{a}_{B} = \sum_{1 \le j \le k \le 1}^{N/2} x_{j}^{2} x_{k}^{2} x_{1}^{2} \tag{7}$$

On the other hand, the following holds ,

$$\sum_{\substack{i \neq j \neq k \\ i \neq j \neq k}}^{N/2} x_i^4 x_j^2 x_k^2 = \sum_{i=1}^{N/2} x_i^4 (a_4 - x_i^2 (e - x_i^2))$$
 (8)

$$\sum_{i \neq j \neq k}^{N/2} x_i^4 x_j^2 x_k^2 = a_4 \sum_{i=1}^{N/2} x_i^4 - e_{i=1}^{N/2} x_i^6 + \sum_{i=1}^{N/2} x_i^B$$
 (9)

By using eq.5 , eq.9 is changed into,

$$\sum_{\substack{i \neq j \neq k \\ i \neq j \neq k}}^{N/2} x_i^4 x_j^2 x_k^2 = a_4(e^2 - 2a_4) - e \sum_{i=1}^{N/2} x_i^6 + \sum_{j=1}^{N/2} x_j^8$$
 (10)

Now, squaring both sides of eq.4 one gets,

$$a_4^2 = \sum_{i \le i}^{N/2} x_i^4 x_j^4 + 2 \sum_{i \ne j \ne k}^{N/2} x_i^4 x_j^2 x_k^2 + 6 \sum_{i \ne j \ne k \ne 1}^{N/2} x_i^2 x_j^2 x_k^2 x_1^2$$
 (11)

Inserting eqs.7 and 10 into eq.11 and noting that 11,

$$\sum_{i=1}^{N/2} x_i^6 = e^3 - 3ea_4 + 3a_6$$
 (12)

one obtains,

$$\frac{N/2}{\sum_{i < j} x_{i}^{4} x_{j}^{4} = 5a_{4}^{2} - 8ea_{4} + 2e^{4} + 6ea_{6} - 2\sum_{i = 1}^{N/2} x_{i}^{8} - 6a_{8}$$
 (13)

Multiplying eqs. 3 and 6 side by side, one gets,

$$ea_{5} = \sum_{i=1}^{N/2} x_{i}^{4} (a_{4} - x_{i}^{2} (e - x_{i}^{2})) + 4a_{3}$$
 (14)

$$ea_{6} = a_{4} \sum_{i=1}^{N/2} x_{i}^{4} - e \sum_{i=1}^{N/2} x_{i}^{6} + \sum_{i=1}^{N/2} x_{i}^{9} + 4a_{8}$$
 (15)

Using eqs.5 .12 ,15 and one has,

$$\frac{N/2}{\sum_{i=1}^{N} x_i^8} = 4ea_6 - 4e^2a_4 + 2a_4^2 - 4a_8 + e^4$$
 (16)

Then eq. 13 becomes,

$$\frac{N/2}{\sum_{i \le j}} x_i^4 x_j^4 = x_4^2 - 2ea_2 + 2a_3$$
 (17)

On the other hand, it is evident that, $x_1^8 < \sum_{i=1}^{N/2} x_i^8$ and $x_1^4 < \sum_{i=1}^{N/2} x_i^8$

 $\sum_{i=1}^{N/2} x_i^4$. Then by using eqs.16 and 5 one gets,

$$X_1 < \sqrt{e^4 + 4ea_6 + 2a_4^2 - 4e^2} = X_U$$
 (18)

$$x_1 < \sqrt{e^2 - 2a_4}$$
 (19)

The right hand side of inequalities 18 and 19 represent two different upper bounds of X_1 of which the former one is denoted by X_{U} .

Now, consider eq.17. Since $\sum_{i=1}^{N/2} x_i^4 x_j^4 > \sum_{i=2}^{N/2} x_i^4 x_i^4$,

$$\sum_{i=2}^{N/2} x_1^4 x_4^4 \leqslant a_4^2 - 2ea_6 + 2a_8$$
 (20)

Note that, $\sum_{i=2}^{N/2} x_i^4 = \sum_{i=1}^{N/2} x_i^4 - x_1^4$. Then ineq.20 becomes,

$$x_1^4 \left(\sum_{i=1}^{N/2} x_i^4 - x_1^4 \right) \leqslant a_4^2 - 2ea_6 + 2a_8$$
 (21)

and because of eq.5 one obtains

$$(e^2 - 2a_4) x_1^4 - x_1^8 \le a_4^2 - 2ea_6 + 2a_8$$
 (22)

Ineq. 22 can be rearranged as,

$$x_{1}^{B} - (e^{2} - 2a_{4})x_{1}^{4} + (a_{4}^{2} - 2ea_{6} + 2a_{8}) \geqslant 0$$
 (23)

what implies ,

$$x_1 > \sqrt{0.5((e^2 - 2a_4) + \sqrt{(e^4 + 8ea_6 - 8a_8 - 4e^2a_4)})}$$
 (24)

Obviously, the right hand side of the above inequality represents a lower bound, X_L for X_1 . Note that, X_L is an upper bound for X_2 .

3. Conclusion.

The upper and lower bounds for eigenvalues may be found by using various topologically irrelevant mathematical approaches 13 . The topological bounds X_{ij} and X_{ij} derived in the present work estimate the upper and lower bounds of the largest eigenvalue X_{ij} of alternant hydrocarbons much better (Table 1). The other upper bound expressed by ineq.19 is such easier to avaluate than X_{ij} (ineq.18) but it is obviously less sensitive to topological changes occurring in the molecular structures. Since, the coefficients a_{ij} and a_{ij} values should generally be different for isomeric alternant hydrocarbons (see Table 1).

TABLE 1. The Bounds For The Largest Eigenvalue, $\mathbf{X}_{\mathbf{1}}$, of Various Alternant Systems.

The lower bound, X_L , is given by eq.18 and the upper bound, X_U by eq.24. The X_1 values are excerpted from Ref.14.

Molecule	a ₂	a ₄	a 6	_ - 8	× ₁	×u	×L
	-3	1	o	0	1.618	1.618	1.618
\sim	-5	6	-1	0	1.802	1.813	1.801
\rightarrow	-7	13	-7	1	2.095	2.103	2.093
$\supset \leftarrow$	-9	26	-30	13	2.170	2.183	2.151
\bigcirc	-6	9	-4	0	2.000	2.001	1.997
\bigcirc	-7	13	-7	o	2.101	2.106	2.096
\bigcirc	-8	19	-16	4	2.136	2.146	2.127
α	-8	18	-13	1	2.194	2.199	2.185
\bigcirc	-8	18	-12	o	2.175	2.185	2.165
<u>_</u>	-8	18	-12	1	2.170	2.183	2.162
706	-9	25	-25	8	2.193	2.214	2.178
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-10	33	-44	24	2.214	2.243	2.181
	-9	22	-16	1	2.355	2.365	2.350
\otimes	-11	41	-65	43	2.303	2.322	2.259

References

- I. Gutman and O.E.Polansky, "Mathematical Concepts in Organic Chemistry" Springer-Verlag, Berlin, 1986.
- A.Graovac, I.Gutman and N.Trinajstic, "Topological Approach to The Chemistry of Conjugated Molecules" Springer-Verlag Berlin, 1977.
 - 3. E. Hückel, Z.Physik,70,204 (1931).
 - 4. I. Gutman, Croat . Chem. Acta, 48,97 (1976).
 - 5. I.Gutman, Match 8,291 (1980).
 - 6. I.Gutman and O.E.Polansky, Match 8,315 (1980).
 - I.S.Dmitriev , "Molecules Without Chemical Bonds", Mir, Moscow, 1981.
 - 8. O.E.Polansky and T. Gutman , Match 5, 149 (1979).
- 9. 1.Sutman, Match 11, 75 (1981).
- 10. L. Türker, Match. 16,85 (1984).
- 11. I. Gutman, L. Surter and J.R. Dias, Match. 19,147 (1986).
- 12. A. Kurosh, "Higher Algebra" Mir , Moscow, 1975.
- E.Kreyszing, "Advance Engineering Mathematics", Wiley New York, 1967.
- A. Streitwieser. Jr, and J. I. Brauman. "Supplemental Tables of Molecular Orbital Calculations". Pergamon Press. Dxford, 1965.