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Abstract. A systematic procedure for the representation
of the graph with adjacency matrix that is the square of
that of the parent graph is presented.The concepts of T{A)
mates and virtual embedding are introduced and utilized in
the construction of subspectral, isocabsolutespectral and

isospectral conjugated systems.The emphasis is placed on

fertile graphs of chemical interest.

1. Introduction
Isospectral, or in mathematical literature cospectral,
graphs (1) have 1long been of current interest in the use

of graph theory in chemistry (2-8). The pioneering attempts

for constructing the sets of isospectral molecules were



based on either the exhaustive study of secular polynomials
(2,9) ,which would be identical for isospectral graphs, (7) or
Heilbronner ‘s partitioning scheme (2-4,8,?2). Mowshowitz and
Schwenk were the first to realize that many isospectral
graphs could be generated from a single graph ( fertile
graph) of unique qualities (3,4,9,12). It thas been
establ ished that whole families of isospectral graphs can be
derived from a molecular skeleton of vinylbenzene (3) and
almost all non-cyclic graphs (tree graphs) have an
isospectral mate (2). Also, it has been found that in some
instances, a pair of isospectral graphs forms a basis for
generation of a family of structurally related isospectral
pairs, while in other instances, the production of related
systems is not possible (4). Various rules were set forth for
the construction of isospectral (3,7) and subspectral (5,6}
graphs.

In the chemistry of conjugated systems, the primary
interest is focused on graphs in which the degrees of various
vertices (valancies ) do not exceed three. Within the Hickel
molecular orbital (HMO) framework, isospectral molecules (8)
and the construction of the corresponding characteristic
polynomials have recieved considerable attention , because
finding or constructing isospectral graphs have been shown
to have both some practical relevance and interest as a graph

theoretical problem (13-17) .



In the present study, primarily , systems of interest in
chemistry are concerned. A novel type of graph ( T{(A) graph)
igs defined which is extensively used to develop some general
methods for the construction of certain types of isospectral,

ispabsolutespectral and subspectral conjugated systems.

ﬁz—matrix: The adjacency or topological matrix A (2) of

a graph, Giv,e), is identical to the HMO secular matrix for

the electronic system isomorphic to the graph (13,14). There
exist a vector X and a number s such that,

AX = AX (1)
where X is the invariant vector or more commonly,
eigenvector and A  an eigenvalue of graph Giv,e). In n-

dimensional linear space, it is proved that the eigenvalues
of the matrix Ak are equal {with account taken of

multiplicities) te the kth power of the eigenvalues of matrix

A (1B). Hence,
a%x = Nx (2)

where, the matrix 92 is symmetric (19) as the adjacency
matrix A.

fLet Ri and Cj be any row and column vectors of the
adjacency matrix A of graph G(v,e). Then, the element bij of

the corresponding matrix Az is equal to,
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where, akj etc. are the elements of vectors Ri and Cj

fik?
respectively. Obviously, only the pairs of elements which
are mutually nonzero contribute to the above sum. Hence,
B;j =2 231915 e
all 1

where, 1 stands for a vertex which is flanked by both
vertices i and j . In other words , bij is the number of all
walks of length-2 lying between i and j .

T(A) graphs: By considering the topological meaning of the
adjacency matrix A , one can visualize that vertices i and j
become source points of the graph obtained from the
corresponding Coates graph (20) of G(v,e) by deleting
indegrees of 1 and j . Since, adjacency matrices of
conjugated molecules have elements either zero or one, then
the off-diagonal elements of Az— matrices are nothing but
zero or one, except for molecules having 4-membered cycles
where some off-diagonal elements could be two as well. On the
other hand, the diagonal elements of Az—matrin are egual to
degree (dx) of the respective vertices of graph Giv,e) (13).

In the light of the above considerations, an Az—matrix
can be represented by constructing a graph in which every
verte»x i is associated with self-loops having weight 1 ,equal

to di in number , and off-diagonal relations with the
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necessary number of edges having weight 1. Henceforth, these
types of graphs and their decomposable subgraphs will be
called T(A) graphs and T(A) mates, respectively. They are
useful graphs to display the degrees of vertices and the
nearest nonneighbor {second neighbor) relations
simultaneously. As an illustrative purpose, Az—matriEEE and
the associated T(A) graphs of cylopropenyl and butadiene

systems are shown below.
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Theorem 1: Let G(v,e) be the graph of an alternant
conjugated system and A represent its adjacency matrix.
Then, the associated T(A) graph has two edge-disjoint

subgraphs. Hence, it is decomposable.

Let V* and V° be disjoint node sets of G(v,e) .Since,the
off-diagonal elements (bij) of Az—matrix are equal to the sum
of the number of edges directly joining vertex 3j to the
nearest neighbors of i {(eq.4), then all the nonzero bij
elements originate from nodes i and j which are the elements

of the same set W or V0 ). Hence, T(A) graphs of alternant
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conjugated systems are decomposable.

Theorem 1 , enables us to construct T(A) graphs of
alternant conjugated structures readily by connecting all
the nearest nonneighbors of vertex i in G(v,e) and inserting
the necessary numbers of self~loops (equal to di } of weight
1 and repeating the procedure for all the vertices. Note
that, 4-membered rings possess T(A) graphs having two-edged
connections. on the other hand, simple odd-membered
{(nonalternant} monocyclic conjugated systems are
characterized by T(A) graphs having the same odd-membered
skeletons as the corresponding structures possess.

T(A) graphs of (even, odd, and non-—-Kekule (21})) alternant
conjugated systems are decomposable to two edge-disjoint
subgraphs T(H') and T, In the case of an even
alternant structure, these subgraphs are sometimes identical

or isomorphic and sometimes nonisomorphic.
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Theorem 22: T(ﬂ*) and T(a%) graphs of an even alternant
conjugated system are isospectral.

Froof. Let the subgraphs of T(A) covering all the starred
and unstarred positions of the original graph G(v,e) be T
and T(A’). Since, G(v,e) is an even alternant system, its
eigenvalues are symmetrically distributed about zero (21).
On the other hand, the eigenvalues of T(A‘) tor T(A%)) are
the squares of eigenvalues of G(v,e) (18) . Hence,the set of
square roots of the eigenvalues of Te™ or TN which has
v/2 vertices , covers the whole spectrum of Glv,e).
Consequently, T(A*) and T(A") have the same eigenvalues.

Note that, evidently, T graphs of odd alternant and
non—-kKekule systems are subspectral with the corresponding
T(n*) graphs. If n and m ( n > m ) denote the numbers of
starred and unstarred vertices of any of the aforesaid
systems, then n-m zeros exist in the spectrum of
Glvye}l (21). Hence, the same number of zeros are included in
the spectrum of its T(A*) graph .

Isospectral, subspectral and iscabsolutespectral graphs :
Before outlining the practical approach to the construction
of certain types of isospectral ysubspectral and
isoabsolutespectral conjugated systems, the following
corollaries can be drawn in the light of theorem 2 .

Corpllary 1 : Let G and 6° be two even (or odd}! alternant

conjugated systems having v vertices.If they possess at least



one, identical (or isomorphic) A" or Ta%) graph, then
they are i1sospectral (Fig. 1).

Corollary 2: Let G and B° be any two alternant systems having
v and v-© (v>v') wvertices. If they have at least one,
identical {(or isomorphic) 1% or TA%) graph, then 6° is a

subspectral graph of G (Fig.2).

Corollary 3

If an even alternant conjugated system ,6,

Jn

possesses a T(A) mate (T(A*)or Tw® » identical {or
isomorphic) with the T{(A) graph of a nonalternant system G°,
then G and G° are isoabsolutespectral graphs that i1s sguares
of their eigenvalues are wmutually ( irrespective of
multiplicities ) equal.

One should note that, generally, a k-membered nonalternant
ring system is isocabsolutespectral with a Zik-membered even

alternant ring (Fig. 3).

T(A) graphs of isospectral, subspectral sand
isoabsolutespectral graphs usually have some C ammon
elementary subgraphs. Cyclic and acyclic pairs of the

abovementioned types of graphs are interrelated through
various combinations of 3-membered cyclic subgraphs which are
henceforth called “triads". Below, some triad trames

obtainable from conjugated systems are shown. Note that, many
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Fig. | Some i1sospectral systems and their 1(A) mates.
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Fig.2 Some subisospectral systems and their T{A) mates.



Some 1soabsplutespectral pairs and their common TA)

grapiis.
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molecules have identical or isomorphic T(A) graphs (hence

there exist some common triad patterns) such that their
spectra are in one way or another interrelated, e.qg.
cyclopropenyl, benzene, and 3-vinylpentadienyl systems.

Consequently, the possibility of matching of T{(A) graphs of
various structures engenders a special kind of embedding
(virtual embedding) concept as distinguished From the
embedding of real fragments (23-25). For instance, benzene
and 3-vinylpentadienyl system, both contain the virtually
embedded cyclopropenyl structure. Thus, the spectrum of
cyclopropenyl system is a part of the spectra of the others.

Generation of fertile graphs: In the study of isospectral
graphs, certain structures have been noticed such that they
lead to one or more families of related isospectral species
thus exhibiting " fertility " while the others remain
"sterile " (3,4). Vinylbenzene is an example of a fertile
graph. By attaching a residual at one of the indicated
positions ( isospectral points (2,22)) one can generate

isospectral pairs (3). Although, these isospectral points are
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not symmetrically indistinguishable vertices of the
corresponding graphs, they are equivalent in terms of the
T(AY graph concept developed in the present study. They
occupy equivalent positions in one of the T(A) mates where
the points labeled with "a" and "b"” are the isospectral
sites and unrestricted substitution sites (7) respectively.
Isospectral points, as seen in the case of vinylbenzene,
pnssess different topological surroundings in the
corresponding chemical graph G(v,e) whereas, unrestricted
substitution points are topologically eguivalent both in
G(v,e) and T(A) graphs. Note that the sites of vinylbenzene
indicated with "ar {or "b") have molecular orbital
coefficients which are eqgual in absolute value (26).
Obviously, the attachment of any residual at any of the
sites labelled with "a" ;in the presence or absence of any
group(s) at site(s) "b" , always yields superimposable T(A)
graphs, thus resulting in isospectral structures. Note that ,
the interchange of different substituents attached to the
isospectral sites of vinylbenzene also yields superimposable
TiA) graphs. This fact is simply the underlying reason why
vinylbenzene is a fertile system.

As it is pointed out in the above argument, the
generation of highly symmetrical TA) graphs having
nonequivalent but isospectral points can be exploited to

construct fertile graphs. The whole T(A) graph or a subunit



of it may have a symmetry plane through which distinct and
nonequivalent isospectral vertices interchange ( essential
symmetry plane ) . In some cases, it may coincide with the
internal symmetry plane of a T(A) graph ( perfect essential
symmetry plane ). Each of the following T{A) mates has a
subunit which possesses an essential symmetry plane but it is

not an internal symmetry plane.

a

T¢a®) T’

Some novel methods useful for the generation of fertile
graphs are presented below. Isospectral vertices of the
resultant structures are labeled with black circles, squares
etc.

Expansicn process: Isospectral points are generated by
attaching certain groups to a graph G(v,e) (precursor graph}

which leads to a T(A) mate having an essential symmetry

plane. The process is schematically presented below.
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Contraction process: An  essential symmetry plane is

generated by the elimination of certain groups from the T(A)

mates of the precursor graph,e.g.,
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A T{A) graph possessing an essential

Rearr angement process:

symmetry plane 1s generated from the T{(A) mates of a given

precursor graph.e.g.,
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Note that, starting from the same T (A° ) mate another
fertile graph is obtained by the expansion process.
Cyclization process: A T{A) mate having an essential

symmetry plane is generated by the cyclization of the given

precursor graph Giv,e), e.qg.,
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Glv,e) T(A) Blv,e’)
Decyclization process: It is reverse of the cyclization

process defined above. An essential symmetry plane forms

after the removal of an edge from the given T{A) mate,e.g.,

v Rl

Slv,e) T !l

Glv,e”)



As it is seen, through all these processes, first the
given precursor graph 1is decomposed into its T(A) mates.
Secondly, by reconstructing the suitable mate, one obtains a
T(A) graph having fertility which is eventually resolved to
the corresponding fertile graph. Below, some condensed
fertile graphs are shown. Each set of isospectral points is

indicated separately.

The methods described in the present study are mostly

for the purpose of construction of special types of systems



as based on the matching of T(A) graphs. Although,the concept
can be utilized for the purpose of establishing the existing
iso-,sub-, and isoabsolutespectral structures between the
group of various systems, negative conclusions should not be
drawn in the absence of any matching T(A) graphs, because
some other furtive topological factors could play role on the
spectra of graphs.

Systems containing A4-membered rings possess T(A)
mates in which edges having weight greater than 1 exist.
These structures constitute a special type of class within
themselves ,so that their T(A) graphs hardly ever match with
T(A) graphs of any other system having no 4-membered rings.
In the case of acyclic structures the matching possibility
of the T(A) graphs arises from the mere fact that
methylenpropenyl, cyclopropenyl and benzene systems all have
the same triad patterns. However, in the family of acyclic
structures, methylenpropenyl moiety is the unique subgraph
which may lead to a triad pattern. Because of that, T(A)
graphs in the acyclic series are less likely to be
superimposable with each other as compared to the case in

cyclic structures.
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