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(Abstract) A method is developed that helps us enumerate all the
rational formulas for given chemical compounds containing carbon,
hydrogen, oxygen, and chlorine atoms; the rational formula can be
interpreted as a representative for a class of valence isomers which
have been introduced by A. T. Balaban. This method makes use of
generating functions such as L(u;C,H,N)M(C,H,N,O) for hydrocarbons, where
L(u;C,H,N) = (1 - CH2)(Cu-IN2 - N2u)/(C - N2} + CU-1, and M(C,H,N,0) =

1/{(1 - CH2)(1 - NH)(1 - O)}; the powers of the parameters C, H, N, and O
indicate the numbers of chemical functional groups >C<, -CH3, >CH-, and
-CHa2-, respectively; u is the cyclomatic number in graph theory.

1. Intr i

Balaban!-4) called "valence isomers" a subclass of constitutional
(structural) isomers which have a common set of vertex degrees
(valencies) in hydrogen-depleted (molecular) graphs. One class of
valence isomers for a given molecular formula can then be constructed by

means of partition of groups having degree 1 (terminal groups)
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separately from groups having degrees 2, 3, or 4 ; in the chemical
notation, the class is represented by a type of molecular formula in
which the atoms are grouped together by round brackets. Such a
representative can thus be regarded as being a rational formulaS). For
example, two compounds, 2-methyl-3-pentene and
trimethylcyclopropane, are valence isomers for the molecular formula
CgH12; they share the same rational formula (CH)3(CH3)3 and the same
set {3, 3, 3, 1, 1, 1} of valencies.

The present note will describe a generating function method applicable
to the enumeration of rational formulas for given molecular formulas
containing both several kinds of and any number of atoms. This method

is more general than that for acyclic hydrocarbons reported in Reference

Our starting point of the discussion is to assume that a given
hydrocarbon CpHm is made up of functional groups >C<, >CH-, -CH»-, and
-CHag; they have valency 4, 3, 2, and 1, and are symbolized by C, N, O, and
H, respectively. Not all given sets of valencies are realizable as
multigraphs (or molecular constitutional structures); mathematical
restriction should be imposed on the setf).  The necessary and
sufficient condition has been established by Senior?): (i) The sum of
valencies is an even number. (ii) The sum of valencies is greater than
or equal to twice the maximum valency. (i) The sum of valencies is
greater than or equal to twice the number of valencies minus 1. We need

to satisfy Senior's condition for a given set of valencies.
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Senior's restriction (iii) for ChHm states that the number 4n + m - 2(n
+m- 1) =2n - m + 2 is non-negative; we can put it into 2u 2 0 because of
restriction (i); u is just the cyclomatic number8) in graph theory.  Note
that the inequality u < n follows from m = 2.

It is possible to derive two equations

ng + NN + No + ny =n  from the number of carbon atoms, and

NN + 2np + 3ny = m from the number of hydrogen atoms

where ng, nN, ng, and ny stand for the numbers of the functional groups.

Subtraction of the latter equation from twice the former one leads to

2nc+NN-NH=2n-m

which is free of np. Therefore, we obtain the Diophantine equation

NH + 20 =2nc + NN + 2

in which the variables are all non-negative. Each solution of the
Diophantine equation, if it fulfils Senior's restriction (ii), can be
regarded clearly as being a rational formula that is realizable as at least
one molecular structure. We try to express the solution using a power
term of the parameters C, N, O, and H, and then to add all the power terms
together; the final expression is a form of generating function.

In a particular case u = 0 the Diophantine equation is read as ny = 2ng
+nn + 2, for which the generating function has been reported in
Reference 5; that is, HZM(C H,N), where M(C H,N) = 1/{(1 - CH2)(1 - NH)}.

For u = 1 we have the Diophantine equation nq = 2n¢ + ny for which the
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generating function is simpler than that for the case u = 0; namely,
M(C,H,N).

Let us consider a general case for given u »1; then the Diophantine

equation becomes ny + 2(u - 1) = 2ng + nN.  If ng is equal to 0, then a

sequence of power terms

N2{u-1) N2(u-1)NH, N2{u-1}(NH)2, N2(u-1}(NH)3, ... (ad infinitum)
is determined in a way that ny runs from zero to infinity; the sum of
them leads to a series N2(u-1)/(1 - NH). In a similar manner, if ng
equals 1, then a series of power terms for the running of ny and ny is
calculated:
N2(u-2)C + N2(u-2)CNH + N2(u-2)C(NH)2 + ... = N2(u-2)C/(1 - NH)
If ngc = k < u -1 in general, we can obtain a series N2(U-k-1)Ck/(1 - NH).
It is readily seen that if ng = u - 1, the sum of power terms for ny = 0, 1,
2, 3, ... takes the form Cu-1/(1 - NH). If ng > u- 1, then the series

CUH2/(1 -NH), CUH2CHZ/(1 -NH), CUH2(CH2)2/(1 -NH),

are obtainable for the running of ng; the summation of them is given by
CUH2/{(1 - CH2)(1 - NH)}.

Summing all the above series up from nc = 0 to infinity we have

{N2(u-1) 4 N2(u-2)C + N2(u-3)C2 4 .
+N2CU-2 4 Cu-1 4 CUH2/(1-CH2)}/(1- NH)
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= {(CU-TN2 - N2u)/(G - N2} + Cu-1/(1 - GH2)}/(1 - NH)
= {(1 - CH2)(CU-TN2 - N2u)/(C - N2) + Cu-1J/{(1 - CH2)(1 - NH))

This function is denoted by L(u;C,H,N)M(C,H,N), where

L(u:C,H.N) = (1 - CH2}{CU-TN2 - N2u)/(C - N2) + Cu-1

Multiplying L(u;C,H,N)M(C,H.N) by 1, O1, 02, 03, ., and adding them

together, we get the required function L{u;C,H,N)M(C,H,N,O) for ChHm,
where M(C,H,N,0) = M{C,H,N)/(1 - O).

Table 1. List of L(u;C,HN) for u = 0 to 10.

u  L{u,CHN)

0 He

11

2 (1-CHYN2 +C

3 (1-CH2)(N4 + N2C) + C2

4 (1- CH2)(NS + N4C + N2C2) + C3

5 (1- CH?)(NB + N6C + NAC? + N2C3) + C4

6  (1- CHY)(N'0 4 NBC + N6C2 + N4C3 + N2C4) + C5

7 (1- CH2)(N12 4 N10C + N8C2 4+ N6C3 + N4C4 + N2C5) + C6

8 (1-CH2)(N14 4 N12C + N10C2 4 N8C3 4 N6C#4 + N4CS + N2C6) + C7

9 (1- CH2)(N'6 4+ N14C + N12C2 4+ N10C3 4 NBC4 4+ N6C5 +N4C6 +N2C7)+ C8
10 (1-CH2)(N18 +N16C+N14C2+N12C34+N10C4+NBCS + N6CH4+N4C7+N2C8)+C9

Meth { Enumeration for Hydrocarbon

All the rational formulas for a hydrocarbon ChHpn (2u =2n-m + 2 2 0)

can be produced by the coefficient of t" in the expansion of
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L(u;Ct,Ht,Nt)M(Ct,Ht,Nt,Ot) because only one carbon atom is involved in
each functional group. The function L{u;Ct,Ht,Nt) is the numerator in the
totally generating function, so that it affects the starting power of the
expansion; M{Ct,Ht,Nt,Ot) specifies an increase in the powers. The

expansion of M(Ct,Ht,Nt,Ot) has been written®) as

M(CtHtNLOt) = ¥  Mp(C HN,O)",
n=0

Mn(C.H,N,0) = My(C,H,N) + OtMp_1(C,H,N) + O2Mp 2(C.HN) + . . .
+ ON-2M5(C H,N) + On,

Mi(CHN) = (NH)"S(CH2)S[ (NH)3K + (NH)3k-1(CH2)2 + .
+ (NHP3(CH2)2(k-1)},

and if r > s, then (NH)"-S(CH2)S(CH?2)2K is added to Mp(C,H,N); n = 2(3k + 1)

+5 0<r<3 and 0<s<2.

In order to get the number of rational formulas for the hydrocarbon
CphHm with u we replace each parameter in the totally generating function
by t; namely, the coefficient of t" in the expansion of L(u;ttt)M(tt.tt)
indicates the number of rational formulas. Using Mp(1,1,1) =k (r<s),

Mp(1,1,1) =k + 1 {r = s}, and summing them up from k = 0 to k-1, we have
(06 +5) + (16 +5) + (26 +5) + ... + ((k-1)6 + 5) = 3k2 + 2k

The coefficient Mp(1,1,1,1) of tN in the expansion of M(t,t,tt) is thus

calculated as in Table 2.
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Table 2. List of Mp(1,1,1,1) forn =2(3k + 1) +s5,0<r<3,0<s < 2.

s=0 s =1
r=0  3k{k+1)+1 (3k + 1)(k + 1)
r=1 (3k + 2)(k + 1) (3k + 3)k + 1)
r=2  (3k+4)k+1) (3k + 5)(k + 1)

Hence by use of the function

L{utt,t) = tu-1 4 tu 4 tu+l 4 tu+2 - 2u-1 - {2u © f2u+1

the general solution that gives the number of rational formulas for ChHpy

with u is expressed by

Mpu+1 (11,01 + Mpu(1,1,1,1) + Mpopq(1,1,1,1) + Mpoy.2(1,1,1,1)
- Mn2ye1(1.1,1,1) - Mp2y(1,1,1,1) - Mp.2g.1(1,1,1,1)

where Mq(1,1,1,1) are ignored if g < 0 has happened in practice. It
should be noted that Senior's restriction (ii) comes into effect when
small molecules are treated; for example, refer to Example (b) in the

next Chapter.

4. lculati xamples for rocarbon

We now make use of the generating function method in order to

determine all rational formulas for given hydrocarbons.



(@) The molecular formula CapHzp, u = p + 1, is given. In the particular

case of C4H4 (p=2) the generating function is written as

CZM(C H,N,0) + CNEM;(C,H,N,0) + N4Mo(C.H,N,0) = CZ(NH + 02) + CNZO + N¢;

in chemical words, these power terms can be interpreted as Cz{CH)(CHg3),
C2{CH32)2, C(CH)2(CH2), and (CH)4, respectively; the number of raticnal
formulas is Mg 2(1,1,1,1) + Ma3(1 11,1} + Mga(1111) =2 +1+1=4

In the case of CgHg (p = 3), the generating function becomes

C3M3(G,H,N,0) + GBN2Mo(C,H,N,0} + CN4M; (G, H,N,0) + N6Mg(C,H.N,0)
= C3(CH2 + NHO + O3) + C2N2(NH + 02) + CN40 + N8,

and3+2+14+1=7. The above results for C4Has and CgHg agree with
those reported by A. T. Balaban3).
The effective terms in L(p+1,C ,H,N) with p > 3 take the form

N2P + N2{P-1)C + N2{p-2)C2
+ (1 - CH2){NZ(P-3IC3 4 N2(P-4)C4 4 .. + N2CP 1} + CP

in which the total power of each term is at most the number 2p of carbon
atoms; then tP + (P+1 4 tP+2 4 P+3, Therefore, the general solution for

p > 3 is expressed by
CPMp(C,H,N,O} + NZCP-IMp.1(C H,N,O) + ... + N2(P-1)CM(C H,N,O)
+ N2PMg(C,H N,Q) - CHZ{N2(P-31C3Mg(C,H.N,O) + N2(P-4)C4M(C,HN,O) + ...

+ N2CPIMp.4(C. MO,

and the number of rational formulas is equal to



Mp(1,1,1,1) + Mp-1(1,1,1,1) + Mp-2(1,1,1,1) + Mp-3(1,1,1,1)

For example, CgHg (p = 4):
C4Mg4(C,H,N,0) + N2C3M3(C,H,N,0) + N4C2M32(C,H,N,O) + N6CM;(C,H,N,O}
+ NBMg(C,H,N,0) - CH2N2C3Mp(C,H,N,Q)
= C4(N2H2 + CH20 + NHO2 + 04) + N2C3(CH2 + NHO + 03) + N4C2(NH + 02)
+ N6CO + N8 - CH2N2C3
= C4N2H2 4+ C50H2 + CANO2H + C404 + C3N30OH + C3N203 + C2N5H + C2N402
+ CNBO + N8,
and the number 4 + 3 + 2 + 1 = 10.
Another example CigH1g (p = 5):
CS5Ms(C,H,N,0) + N2C4M4(CH,N,O) + N4C3M3(C,H,N,O) + N6C2M2(C H,N,O)
+ N8CM1(C,H,N,0) + N19Mg(C,H,N,O) - CHZ2N4C3Mg(C,H,N,0O)
- CH2N2C4M4(C,H,N,0)
= C5(CH3N + N2H20 + CH202 + NHO3 + 05) + N2C4(N2H2 + CH20 + NHOZ + 0%)
+ N4C3(CH2 + NHO + O3) + N6CZ(NH + 02) + N8BCO + N10 - CH2N4C3
- CH2N2C40
= CBNH3 + C5N20H2 4+ C602H2 + CSNOBH + C505 + CAN302H + C4N204
+ C4N4H2 + C3NSOH + C3N403 + C2N7H + C2N602 + N8CO + N10,
and 5+ 4 +3+2=14

(b) We consider next the case where the molecular formula is written
as CpH2n, u = 1. Every rational formula is able to be calculated by means
of Mp(C,H,N,0) because L(1;C,HN) = 1. There is only one solution O2 for
CoHya although M2(C,H,N,0) = NH + 02, because Senior's restriction (ii) is
required. Senior's restriction (ii) for C3Hg also excludes the first
power term in M3(C ,H,N,0) = CHZ + NHO + O3.
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The general expression for n > 3 is exactly Ma{(C,H,N,O}; the number of
rational formulas is given by Mp(1,1,1,1); for example, Msp(1,1,1,1) = 234
for CsoH100- Note that the above result is different from the general
answer H4Mp.2.4(C H,N,O) + H3Mp.2.3(C,H.N,0) + H2Mp.2.2(C,H.N,O) +
H'Mp-2.1(C,HN,O} for alkenes CphHgz, in Reference 5; these functions are
derived from four compounds Cyp.gHop{C=C), Cp.2Hon.1(HC=C),
Cn-2Han.2(H2CC), and Cn.oHan.a(HaCC).

(c) We are given the molecular formula ChHpn.2, U = 2. It follows from
L(2Z,CHN) = {1 - CH2IN2 + C that if 2 < n < 4, the generating function is
CIMu1(C HN,O) + N2M;,.2(C HN.O). and that if n > 4, the generating

function becomes

CIM; 1{C H,N.O) + N2Mq.2(C H.N.O) - CH2N2ZM,_5{C . H.N.O),

and the number of rational formulas is Mp.1{1,1,1,1) + Mp.2(1,1,1,1)
Mp.si1.1,1.1). For zzample, CsiHy

CIM4IC H N,O) + N2Ma(C 14 N O - CHEN2M(C H N O

= CINZHZ + CH20 + NHO?Z + O%) + N2(CHZ + NHO + O - CH2NZ

= ON2H2 4 C20H2 + CNOZH + CO% + NSOH + N2O83;

these power terms coirespond to the results denved by A T. Balaban3d)

Another exarmnle, wipHes The number of rational formulas equais

Mag(1.7.1,1) + Mag(1,%,1.1) - Mgs(1,1.1,1) = 226 + 217 - 192 = 250

{d) The molecular formuia CygH1g (involving adamantanes), u = 3.

LiBitty) = 12 + 13 ~ 14 - 46 - (7,

Mig.2(1,1,1,1) + Mig.3{1.1,1,1) + Mig.4(1,1,1,1) - Myg.g(1.1.1,1)
Mis.7(1.1,1,1)

=10+8+7-4-3
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= 18, the number of valence isomeric classes; refer to Conclusion in
Reference 4.
The molecular formula C14Hpgp (involving diamantanes), u = 5.

L(5:ttt) = t4 +t5 4+ 16 4+ 7 -8 - 10 - {171,
Mig-4(1,1,1,1) + Myg-5(1,1,1,1) + Myg.6(1,1,1,1) + Myg.7(1,1,1,1)
- Mig.g(1,1,1,1) - Myg.1001,1,1,1) - Myg.44(1,1,1,1)
=14+12+10+8-5-4-3
= 32,

The compound Cp2Hzg (such as tetramantanes), u = 9.
Mo2.g:1(1.1.1,1) + Maog(1.1,1,1) + Maz.gq4(1.1,1,1)
+ Ma2.9.2(1,1,1.1) - Maz.1841(1,1,1,1) - M22.48(1,1,1,1)
- M22.18.1(1,1,1,1)
=24+21+19+16-5-4-3
= 68.

The method described in the previous chapters can easily be applied to
the enumeration of rational formulas for compounds containing
heteroatoms.  We first treat the simplest case where the molecular
formula ChHMC containing only one oxygen atom is given; it becomes
separated into two distinct cases; the one is (ChHm)O, ethers, and the
other is ChHm-1(OH), alcohols. The answer for the former case is of
course equivalent to the one for hydrocarbons. For the latter the
Diophantine equation becomes nq + 2u =2ng + ny + 1 where dn + m - 1 + 1
2(n+m-1+1-1)=2n-m + 2 = 2u because the valency of OH is 1. The
integer 1 in this Diophantine equation slides powers of the parameters C,
H, N; in other words, the integer affects only the numerator of the

rational-formula generating function. We have
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H/{(1 - CH2)(1 - NH)} for u = 0, {N + HC/(1 - GH2)}/(1 - NH) for u =1, {N3 +
NC + HC2/(1 - CH2)J/(1 -NH) for u = 2, {N5 + N3C + NC2 + HC3/(1 -
CH2)M(1- NH) for u = 3, ..., {N(N2(u-1) 4 N2(u-2)C + ... + N2CU-2 4+ Cu-1) 4
HCU/(1 - CH2)}/(1 - NH) for given u.

A similar treatment is possible for the molecular formula CoHm,CI.
The molecular formula ChHm-2(OH)2 is given.  Then the Diophantine
equation has the form ny + 2u = 2n¢ + nN.  Therefore, the totally

generating function is written as L{u+1;C,HN)M(C,H,N,O) for given u.
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