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Abstract
It is shown that if a graph is cocircuit with a nearly regular
graph , then it must aiso be nearly regular and have the same valency
sequence . This result is then used to establish the characterizations of
severail Tamilies of nearly regular graphs by the circuit polynomial .
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1. Basic Definitions

We consider only graphs that are finite ,loopless and containing
no multiple edges . Let G be a graph . We define a circuit {(cycle) with one
and two nodes in G to be a node and an edge respectively . Circuits with
more than two nodes are called proper circuits . A circult cover of 6
15 a spanning subgraph of G In which all the components are circults.

Let us assoclate an Indeterminate or weight wg with each

circuit in G and the monomial w(S) =, w, , with each circuit cover S ;

where the product is taken over all the components inS. Then the circuit
polynomial of G Is
C(G;w) =T w(S),

where the summation 1s taken over all the circult covers of G, and w
( called the weight vector ) is avector of the indeterminates w,, .
For example , let G be the following graph . We will assign the weight w,.

to each cycle with r nodes .

G has one cover consisting or four isolated nodes . This cover

has weight w 4 6 has four edges and therefore four covers consisting of

an edge together with two isolated nodes . The welght of each such cover

is w!2

wo . Therefore the contribution of these covers to the circuit
polynomial is 4w|2w9‘ G has one cover consisting of a triangle , together
with an isolated node .The weight of this cover is wwy . Finally , G has

one cover consisting of a pair of independent edges . The welight of this



cover 1s w22. Hence the circuit polynomial of G is

C(G;w )=w|4' 4w|2w2' Wws+ w22 .

The circuit polynomial was iIntroduced in Farrell [2) . It has
been shown in Farrell [3], that both the characteristic polynomial and the
matching polynemial are speclal cases of the circutt polynomial . Thus ,
the circuit polynomial is an interesting combinatorial tool . In this paper ,

we assign the weight w. to each cycle withr nodes . Therefore

W=(Wy, Wy, Wy ), where p is the number of nodes InG .

The most baslc result about circuit polynomials Is the
following lemma which is taken from Farrell [3] .
Lemma 1(The Fundamental Edge Theorem)
Let G be a graph and xy an edge in G . Then
C(G;w) = C(G';w) + W, C(6-(x,y) ;w) + C(G*;W),

where G' is the graph obtained from G by deleting xy , G-(x,y) is the graph
obtained from G by removing the nodes x and y and G* is the graph whose
covers are restricted to always contain the edge xy .

This result 1s essentially the Fundamental Theorem given In [2].
It is quite useful for finding circuit polynomials of arbitrary graphs . We
can apply the lemma recursively to smaller and smaller graphs until we
obtain graphs whose circult polynomials can be immediately written down.
We will refer to this algorithm as the edge reduction process .

The following example itlustrates the edge reduction
process . The “plvotal” edge used in each application of Lemma 1 is
highlighted . By summing the final contributions given in the boxes in the
diagram , the circuit polynomial of G is obtained
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IT we restrict the covers to those containing nodes and edges
only , then the resulting circuit polynomial is called the matching
polynomial of G. Thus every circult polynomial can be written as

C(G;w) - M(G;w) + C(G*;w) ,
where M(G;w) is the matching polynomial of G and C(G*;w) 15 a polynomial
over w , containing all the monomials corresponding to circult covers of 6
with at least one proper cycle . IT G has no proper cycles ,then C(G*;w) = 0.

Let G be a graph. We say that C(G;w) characterizes G if and
only I C(G;w) = C(H;w) implies that H=G. In this case , we also say that
G Is circult unique . It has been shown (Farrell and Guo [S) ) that many of
the well known famflies of graphs are circuit unique . These include
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chains (trees with nodes of valencies 1 and 2 only ), cycles, wheels ,
complete graphs and regular complete bipartite graphs . In this article ,
we extend the set of circuit unigue graphs to include unions of chains , the
basic graphs with cyclomatic number 2 and various kinds of polygonal
chains .

It has been shown [2,3] that the circuit polynomial is a
generalization of the characteristic polynomial of a graph, and recently
(see [6]), that it is a generalization of the p-polynomtal of a graph. The
p-polynomial has found applications in chemistry (see Gutman and
Polansky [7] ) . Thus the circuit polynomial is related to some other
Important graph polynomials . For any graph polynomial , it Is of interest
to determtne 1ts ability to characterize graphs . In the case of the circult
polynomial,characterization fmpiles among other things, that the graph is
unigue as far as the number of different circult covers is concerned . This
information could be vital to the use of the graph in applications where
the cycle covers are important .

Since the circuit polynomial is a generalization of the
characteristic polynomial, it is easy to show that any graph which Is
characterized by its characteristic polynomial must also be characterized
by its circuit polynomial i.e. characteristic unigueness implies circuit
uniqueness. Many families of graphs are characterized by thelr
characteristic polynomlals (see Cvetkovic et al [1]) . Such graphs will
therefore be circutt unique .We consider here, graphs which have not been
shown to be characteristically unigue, viz the basic graphs with
cyciomatic number 2.

Definition

Let G be a graph . We say that G is nearly regular if and only
If the modulus of the difference between the valencies of any two nodes in
G does not exceed | .
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From the above definition , it follows that regular graphs are
also nearly regular . The results given in [5] pertain mainly to regular

graphs .In the material which fellows , we denote the chain , cycle and

complete graph with p nodes , by Pp . Cp and Kp respectively . The
complete m by n bipartite graph is denoted by Km,n . We denote the graph

consisting of components H and K by H uK. The notation IKG) is used for
the valency sequence of G . In M(G), d"means d.,d, d, ..., d(rtimes). For
brevity , C(G) is written for C(G;w) . Finally , we omit limits of
summations when they are clear from the context of the summand .
2. Preliminary Results
Let G be a graph and d; the valency of node | in G . The following

result can be easily proved .
Lemma 2
Let G be a graph with p nodes and g edges . Then
(i} The highest power of w, in C(G;,w) is wlp and this occurs with

coefficient 1.

(11) The coefficient of w]p'z Wy fs the number of edges in G.

(111) The coefficient of w,P™4 w52 is
p
d
q, iy
&0 12_',1( =3,
The following lemma 1s cructal to the main result in the paper.
Lemma 3
Let p be a positive integer and d and r non-negative integers

withO¢r<p. Let d; (=1, 2,,.,p) be non-negative Integers such that 3;d,

= pd+r . Then z,(dzi y 1S minimum if and only if

d, =d, =d,_=..=d, =d+landdy =d,_ =...=d. =4 f
h N2 s Ir Ky Tk Kp-r or



some positive integers J; (1=1,2,.,nandk;(t=1,2,.,,pT).
Proof
Puts=z(°21 ) andQ=3d, Then 25=2,d2-Q.ThenS Is

minimum 1f and only If 3, ;d,2 Is minimum . Since 3;d; = pder ,we can
write d; = d + o, , where o; Is an integer . Then
302 = 5 d 002 = 502+ 200, + 0,2 ) = pa? + 20 {0, + 50,2 .
Since Zy(d +oy) = pd*r, it Tollows that %, e4= r. Hence we get

50,2 = pdZ + 2dr + 5,042 30,2 15 minimum If and only if ;042 Is
minimum . Since Z; oy =randr<p, it is clear that ,‘2 is minimum if

and only If r of theey's Is 1 and the others, zero . Hence the result. O

The Tollowing theorem is immediate from Lemma 3 .
Theorem |

Any graph that is cocircuit with a nearly regular graph is itself
nearly regular with the same valency sequence .

Proof

From Lemma 3 , for any cocircuit graph , the value of 3 is
unique . Hence the result follows . O

Lemma 2 and therefore Theorem |, also hold for matching
polynomials . Thus we have the following corollary
Corollary 1.1

Any graph that is comatching with a nearly reguiar graph Is
itself nearly regular with the same valency sequence .

The above corollaries show that the set of nearly regular
graphs is closed with respect to the properties of comatching and
cocircuit . This phenomenon is quite useful for investigating matching
uniqueness and circuit uniqueness of nearly regular graphs .
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We denote by P, , the chain with n nodes .
Lemma 4

A chain cannot be cocircuit with the union of two non-zero
chains .ie. If C(Pp) = C(P) C(Pg) , then either r=0 and s=p ; or =0 and r=p.
Proof

Let us assume that the lemma Is false . Then 3 non-zero

integers r and s such that C(Pp) = C(P) C(Pg) . Now , the highest power of
Wy on the left-hand side Is wlp while the highest power of w; on the
right-hand side . 1s w™*S. = p = r+s. The coefficient of w;P"2 w., on the
left-hand side iIs p-1 , the number of edges in Pp . The coefficient of
w52 w, on the right-hand side 15r+s-2 = p-1=r+s-2.2p=r+s-1.
This is a contradiction , Hence our assumption is false . Hence the lemma
is true . a
Lemma 5

The union of two chains cannot be cocircuit with a different
union of two chains. i.e. C(Pp) (:(Pq )= C(Pp) C(Pq) ifandonly ifp=p'andq
=q;or (what is the same ) p=p'andq=q .
Proof

Suppose that p = p' and g = @' . Then clearly , the equation
follows . Conversely , let us assume that

C(PD) C(Pq )= C(Pp-) C(Pq-) ; s GIY

By considering the highest power of wpon both sides of the equation , we

getp+g=p +q. Letuswrite a=p+q.Apply the reduction process Lo
the chain P, in two ways (i) by deleting the p th. edge and (i) by deleting

the p' th. edge . This ylelds the respective equations [ with P written for

C(P )]



pa= pppq‘ szp,_l pQ'l
and Py= Pp- Pq- *wo Pp-_l Pq-_, .
It follows that
Pp Pq t Wy pp—l Pq,, = Pp- Pq- *Wo Pp--, qu-l 3
from Equation (1), we get that
Pp_] pq_1 = pp_] pQ'l 3
By repeating the argument for b = p+q -2 etc, we get
Po-mPo= Pp-mPy-m '€ Pp-m= Py-mPq-m-
where m = min(p, p’, q, @) ( Here we assume that m=q , without loss in
generality ) But from Lemma 3, this implies that efther p-m= p-m and
g-m=00rq -m=p-m andp-m = 0. This further implies that either
p=pandq =q(since g-m=q-m)orq =pandp=q .Hence the result
follows. O

Theorem 2

The circutt polynomtal characterizes Py o P, wherem ,n22
Proof

Let G be a graph such that C(G) = C{ Py v Pp, ). Since Py u Py is
nearly regular , it follows from Theorem 1, that G is also nearly regular

and that THG) = ( 2M*N"4 14y Since (( P Y Py ) has no term in the
weight w. for r>2, 1t follows that G is a forest . Also, from the terms

W™ and w,M*N"2 w, in C(G) + it follows that G has men nodes and

m+n-2 edges . Therefore G has two components . The only trees with nodes
of valencies | and 2 only are chains ; and so , G s the union of chains .

From Lemma 4, we conclude that G = P, u P, Hence the result follows .

0



3. The basic graphs with cyclomatic Number 2
The basic graphs with cyclomatic number 2 are shown below in
Figure 1.

r
pi r p

(a) (b) (c)
Figure 1
We call the graphs in Figure 1(a), (b) and(C), the theta graph
Bpqr (Pa 22, PO), the dumbbell D, o (pg > 2, 0) and the
figure-eight graph Ep,q (p,q>2). Theorem 1 can be used to establish the
characterizations of the theta graph and the dumbbeil . In the case of the

8-graph , any graph H such that C(H) = C( Bp,q,r) must have the property

that TI(H) =TI 8, o )= ( 2P*0*T=3 32 This restriction is sufficient

p.ar
to yield H =G . Similarly , It can be easily shown that Dy, is
characterized by its circuit polynomial .

Notice that we can also define Ep q to be the graph obtained

from B o by "shrinking” the chain P. to anode ie. Ep'q s ep, R
Also , Equ can be obtained from D‘_.,.q r by shrinking the chain

Pr to anode . ie E D Theorem 1 can be used to establish the

pa¥ Dpg

characterization of £, , The only basic graph with cyclomatic number 1is
the cycle C, ; and this has been shown ( [l ) to be circuit unique . Hence

all the basic graphs with cyclomatic numbers 1 and 2 are characterized by

their circuit polynomials . Hence we have the following result .



Theorem 3

The circuit polynomial characterizes all the basic graphs with
cyclomatic numbers | and 2 .
Definition

We define the tadpole Ty o to be the graph shown below in

Figure 2

Figure 2

Wwe note that the tadpole is not a nearly regular graph .
However , If we extend our definition of the dumbbell to include the cases

in which Cp and Cq are improper cycles ( nodes and edges ) then we get

that Tp o Is the dumbbell Dy § . It is therefore appropriate to consider

this graph in our discussions

The following result Is taken from Farrell & Grell {4] . it will
be useful for the material which follows .
Lemma 6

i,
O L w3 c6-a,

w
I

where a.,n is a set of n node-disjoint i-cycles in G ; and the
summation is taken over all such sets of n node-disjoint cycles in G.
Let us apply the reduction process to Tp, o by deleting the edge
Xy . This yields
C(Tp,q) =0y C(Pq_,) + wo C(Pp- 1) CPg-2?



£ M(Cp) C(Pq_ A wp C(Pq_l) *Wo ClPp_ 1) TPy ) . .. (2)
Let G be a graph such that C(G) = C(T, o} . Then G has the following

properties:
(1) G has p+qg-1 nodes and p+q-1 edges .

(2) 6 has a unique cycle C,, [ from the term wlq' |wp in the
polynomiat wp, C(Pq_]) )4
Also, by appiying Lemma 6 to Equation (2) , we get
3

WO _¢io-Cy =Cp.) .
3w P q-1

=6-Cy 2Py .= G has a spanning subgraph C, uPq_; .

Hence G can be obtained by adding [ p+q-1 -(p+q-2)] an edge to CpvPq-

subject to the restrictions above .There are two possible graphs ; (1) the

tadpole Ty, o and (2) the graph H formed by joining a node of valency 2 in

Pg-1 to @ node of valency 2 1n G . Now II(H) = (12, 2P*9°5, 32)  Let g be

the valency of node 1 InH. Then
pras!

%

2)=(;wq-5)+2(%)=p+q+l :

=1
From Lemma 2 , this sum for G is p*q. = a,(G) = ap(H) .

Therefore G $ H. It follows that G 2 qu . We therefore have the

following theorem .
Theorem 4

The circult polynomial characterizes tadpoles .



4. Some Other Families of Nearly Regular Graphs

The graph 6 =Ky, u K,y (m>2) 1s nearly regular . Let H be a
graph such that C(H) = C(G) . Since C(G) (and therefore C(H) ) contains the
term woW.q WIth coefficient unity , it follows that H has a cover

consisting of cycles C, and Cp,,; - Suppose that 3 "link " edges joining

nodes of Cp, to nodes of Cry oy InH. Then we consider the possible ways in

which these edges can occur.

Suppose that 3 a pair of link edges which have no nodes in
common ( fe. Independent link edges ) . Let r and s be the number of nodes
in Cpy, and Cpy 4 | respectively , which separate the nodes at the end of the

independent edges . Then H contains the cycles of lengths r+s+4
and 2m+1-(r+s) . But from C(H) , the largest cycle in H has length m+1 .
Therefore r+s+4<m+1.S0r+s <m-3 ;and 2m+1-(r+s) 2 m+3 >m+1 . This
is impossible . Therefore no such link edges occur in H . The only other
possibility is that all link edges are incident to a single node x either in
Cen OF 0 Cpyy g - But

MH) = 6) = (™! (meny™),
since G Is nearly regular . Suppose that node x belongs to C., , then its
valency ism-1+t , where t is the number of 1ink edges . Therefore t must

either be 1 or 0. 1f t=1, then the subgraph containing Cp,, | has a node of
valency m+1 (since m nodes of Cp,,; must be adjacent to the node at the
end of the link edge) . This is Impossible (by looking at TI(H) ) . Therefore
t=0. It follows that H 2K UKy = 6. Hence we have the following

theorem .



Theorem S

The circult polynomial characterizes Ky v Ky, -
We refer to the graph below In Figure 3 as l)nl Mo . "k(n' 22).

It consists of the cycles Cn‘, Cn2, ,an linked by single edges .
12" R
Figure 3
Theorem 6

The circuit polynomial characterizes D (F'II »2 ).

n|,n2, ,l‘k
Proof

Let G denote the graph Dy, nk(”i > 2). Let Hbe agraph

1M
such that C(H) = C(G) . Since G Is nearly reqular,
M) = ey = (NKT, 3671y where N =z ny.

Since C(G) contains the term ITerI , 1t follows that H has a cover

consisting of k ny-gons (i=1,2,..k) . Since H and G have the same number

(N+k-1) of edges , H contains k-1 "1ink™ (non -cycle) edges . It can be easily
seen that if any of these link edges join two nodes of the same cycie ,then
either H will contain covers which are not In G or the condition TI(H) = N(G)
will be violated . Therefore the link edges cannot belong to any proper
cycles . This restriction , together with Theorem 1 is sufficient to yield
the graph D, 0, ”'nk(n, >2) teHZG6 Hence the result follows . O
Deftinition

The (regular) linear polygonal chain Ly (m>3) is the

graph consisting of k n-gons linked together as shown below inFigure 4.
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Figure 4
Let G be the graph Ly, \ . Let H be a graph such that C(H) = C(G) .
Then C(H) contains the term wy , where N = nk-2(k-1) . It follows that
contatns a hamiltonian cycle Cy . Therefore the remaining k-1 edges of H
are "chords” of Cy . Since G is nearly regular TI(H) = TI(G) = (N, 32k-1)y

It follows that the addition of the k-1 chords must create 2(k-1) nodes of
valency 3 . Therefore each chord must be incident to exactly two nodes of
valency 3. C(G), and therefore C(H) , contains a term In w,X', where

K =(1/2)(k+1), If k' is odd and k'=k/2 , if k is even . Therefore H contains
k' disjoint cycles . This is sufficient to yleld the graph Ly, 1e. H 6.
Hence we have the following theorem .

Theorem 7

The graph Ly,  (n>3) is circuit unique .

The graph Ln,k belongs to a class of graphs which in
mathematical chemistry are called fascigraphs . If we identify the
corresponding nodes of valency two In cells 1 and k , then the resulting
‘circular’ graph Ry, i belongs to the so-called rotagraphs . This graph Is
also obtained by Joining corresponding nodes of two equal cycles . We can
use a similar argument to show that Ry, | is also characterized by C(Ry, ) .

We leave this as an exercise for the reader . Thus we have the following
theorem .
Theorem 8

The rotagraph Rn’k (n>3) is circuit unique .
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