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Abstract. For non-branched catafusenes which have alter-
natively » = 2p or 2p+l times a+1l and b+l linearly condensed
benzenold rings in linear stretchea (segments) separated by
kinke,algebraic formulas are found,first by combinatorial
methods and then as a particular case of the Gordon-Davison
algorithm.When a = b,the formulag reduce to eipreasions al-
ready known from an earlier paper.The problem is generalized
to any sequence of linearly condensed benzenoid rings of va-

rious lengths ai+1.repeated p times.
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ROTATION

a,h,ai = integters representing the numbhers of linearly
condensed benzenoid rings (without counting the

ring at the "kink")

Ak,s = coefficient of polynomial R corresponding to
term a®h¥—®

dizdi~1 = difference batween consecutive indices anpearing
in the terms of polynomial R

Dp = difference between numbers of Xekulé structures

of catafusenes differing by one linear atring of
condenged benzenoid rings

E(T) = the set of edeges in tree 7(4%)

f = injective function for labelling edges of the
tree T(0%)

£y (i=1 or ?)= constants in the expression of Dp

it = molecular graph of catafusene

£

G = dualist graph of catafusene

h;(i=1 or 2)= constants in the expression of Kap

ik,j,k = natural numhers,often indices

T(T) = the get of all pairs of incompatible edges in
(%)

Is = domain of values for k

K = number of Keknlé structures

Kp = idem for r strings of 1inearly condensed henzenoid
rings

Kj,r = idem for the case when each string contains j

benzenoid rings



Qgi) where i=

R,Ry

1

w Y =

the set of natural numbhers

number of strictly increasing atrings Sysenes
Sy 1 where sk_lzj
sum of the above numbers over the range of j
values

sum of the above numbers over the range of do
values

numher of repesated sequences of linearly con-
densed atringas,i.e.the integer ovart of r/s
polynomial associated with the tree T(G™)
furnigshing the number K(G) of Kekulé structures
increment with which the number of Kekulé
atructures increases arithmetically in a linear
gtring according to the Gordon-Davison algori-
thm!

number of linear strings of benzenoid rings

in a catafusene

or 2 = constants in the expression of K3p+i

polynomials associated with the tree T(G¥)
and described in detail in ref.ls

polynomial used in the recurrence which gives
the numher Kap+i of Kekuld structures

in combinatorial relationships ( § 2),s 1ia a
natural number denoting the rank;in § 3,8 re-
presents the number of linear strings which
are repeated p times to afford the zig-zag

regular catafusene
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Si = alternating sum of the numbers of ¥ekulé struc-
turesa for binary resularlyv condensed catafusene
t = r-ps = number of linear strings which apnear onlv once
at the tail of a regularly condensed catafusene
T(c*) = tree ("isoarithmicity tree" in ref.ls) corres-—

ponding to dualist eraph n*

u,v = edges in T(GI) belonging to =(T)
de = 2p-do+k~1
Xy = Variables
y = term Xi Xi e Xi of polvnomial Rl
L TR J
A = get of all integers
z(u,v) = aet of edges in the path between edszes u and v
x] = integer part of x
=) = amallest integer not less than x
x,v = get of natural numbers which are larger than

or equal to x,and smaller than or equal to y



1.INTRODUCTION

The algorithm proposed by Gordon and Davison d allows
eagily the calculation of the number of Kekulé structures
(Kekulé structure count) for any cata-condensed benzenoid
polvevelic aromatic hydrocarbon (PAR).However,it does not
provide the possibility of finding algebraic formulas for
svatems which poaseasas regularities in their structure,nor
does it lend itself readily for recurrent formulas.Several

?2-11

authors have elaborated different formulas for particu-

lar clasges of PAll'g.Computer programs have been devised for

calculating the number of Xekuléd structures.q‘l4

15,16

Two earlier
papera in this series presented algebraic formulas for
the Xekulé structure count of non-branched cata-condensed
PAH's which have equal numbers of hexagona in each linear
portion of a zig-zag catafusene (cata-condensed PAH),or any
of its isoarithmic congeners (i.e.svstems differing only in
the direction of kinks in the dualist graph),

We generalize here this problem in two stages: first for
catafusenes having alternatively a+l and b+l linearly conden-
ged henzenoid ringa,and then to regularly condensed catafuse-
nes,i.e. to svstems having repeating sequences with ao+1,a1+1.
«.e,a+l benzenoid rings in the linear portiona separated by
kinka (where se [N,s > 2).We call the former stage of this
zeneralization "hinary resularlv condensed catafusenes",

A henzenoid ring where a kink in the annelation occurs
17,18

fin a non-branched catafusene) may form a bav-rewion.

Such a bhenzenoid rinz is considersd to belong to both linear
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stretches originating in that kink;this is why the lengths
of such stretches are a+l,b+l,or in general ai+1.aa will be
seen below.A bay-region is formed if a=1 or in general if

a°=1.
? .BINARY REGULARLY CONDENSED CATAFUSENES

2.1.DEFINITIONS AND SUMMARY OF PREVIOUS DATA

We associate to each catafusene a dvalist graph according

19,20 In binary regularly

to the well-established procedure.
condensed catafusene we have only two alternating lengths of
linearly condensed segments,denoted by a+l and b+l,respecti-
vely.%xamples are presented in Fig.l by formulas 1 - 3 which
are all isoarithmic among them with a = 2 and b = 1,and by

the two isoarithmic formulas 4 - 5 which have a = 3 and b = 2,

%1

1 2 3

BN

"ig.1l. Rinary resularly condensed catafusenes: 1 with the

molecular gravh ¢ and the dualist zraph u*.hut only ¥ for 2-5.



To a catafusene with its graph G and its dualist graph G“,
we associate a trae T(G*) with r+l vertices and r edges,cor-
ragponding to the r linear segments of G.The weight ay of edge
i i3 the number of benzencid rings minus one,in the respective
linear portion of the catafusene.We denote by E(T) the set of
edgea in the tree T(G¥),i.e. the cardinal of R(T) is r.With
15

the injective function

£: B(T) —> X ={x1,x?,...,xr}

we obtain a labelling of the edges with variables from X.We
denote by 7(u,v) the get of edzes of the path between edges
nand v in T(6¥),Two edges are called incompatible if the

path connecting them (this path is unique becanse it belongs
to a tree) has an odd length,i.e. an odd number of constituent
edges,.let I(T) denote the set of all pairs of incompatible

edges in TIG®),For each tree T the following polynomial is

defined:1?
Ry(TsXy s Ky ees XY = Z Flu)f(v) (f(w)+l)

(u,v)e 1(T) wé7Z(u,v)
w £ u,v

Ry develoning RI(T:Y].X,,...,Kr) aa a sum of producta of
varinahleg Yl,Xa,...,Xr,and by applyving the idempotency rule

for addition: v+y = y,where y = Xi X: +.s X, ,we obtain the
11 1y
polynomial Q(T:Xl,...,xr).We define:

P(T;Xl'x?""’xr) = Je J(T)(f(u)+1‘ = W(T;KI,XQ,...,Xr)

The following theorem was demonstrated in ref.15
Theorem 1. "or a catafusene having the hydrosen-depleted

molecular graph ¢ conaisting of r linear branches which contain
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Bt+1 benzenoid rings,the Kekulé structure count is
R(G) = P(T(G“);al,ag,...,ar)

where ay is the weight of edge 1.

When all r linear segments have equal length (containing
each {+1 benzenoid rings),in ref.21 it was demonstrated the
following recurrence for the numbers Kj,r of Xekulé structures:
Yizdlirzl (1)

= jK + K

Kj,r+? jyr+l b Py o5

In the case when j=1 thia relationship becomes the ibonaccl
recurrence.l’lo”1
Now we #o on for generalizing this result to the case of

binary linearly condensed catafusenes,with r alternating
linear astretches having a+l and b+l benzenoid rings.We denote
in this case the polynomial P(T;a,b) by P(a,b;r).

Tet Kr(a,b) = P(a,b;r) - according to Theorem 1 - danote
the number of Kekulé structures for catafusenes having r alter-
nating linear portions with a+l and b+l benzenoid rings.We
shall discuss separately two cases according to the parity
of r.Tn this section we shall =simplify the notation by using
K. instead of Kr(a,h).Qy definition,X =2 as in benzene.

We shall denote by |x] the integer part of x and by [x] the

smalleat integer not less than x.
2.2.CA8% 1: r TS BVEN

Tet r = Pp,whe&re p is a non-zero natural number,e.s. cata-
fusenes 4 or 5.The p edeges of odd rank have weight a,and the

p edges of even rank have weicht b.We have

K. = P(a,b;?p) = (a+1)P(1b:e1)P 4 1 _ R(a,b:2p)



Tet the rank be 8 ¢ O,p .We define Ie As:
Isz{kGIN|ké s+9,s+p} e 86{0,1}
Iss{kemkke p,?poI} it 9 = p

and Igz{kEIN|ke s,s+p} if 1 g<s8sgop

We wish to find a combinatorial formula for

k-a
R(a,b; = §§ A Sp €
(a,b;2p) e Y a  Ae,q N
k € Is
A term Ak sas'bk"El in the above sum is obtained from the
’

terms of the polynomial R which have the form 8f .o 8y
ik

#rom the k indices,s are odd and k-s are even,There exists
a hijection between the terms of R and the set of gtrictly
increasing strings i,,1,,...,1 which have the property (x):
(%) at least two consecutive terms in this atrineg have
the same parity.
Thig fact follows from the definition of Rl according to
which each term must contain the weights of two incompatible
edges and,nossiblyv,of other adges,hut in this case excluding
all edges lying on the path connecting the two incompatible
edpas.Tn the case under discussion two e~dges are incompatible
if thev have weirhts with indices sharing the same narity.
Alsa,uy o Z(H,,u‘), i<j ,iff X <iorkzi.
We shall now caleculate coefficients A .9 eIN~ { }
AT 8 £ [k/2] and 5 £ [k/2] ,then any strictly increasing
string with s ndd-rank terms verifies pronerty (x).This can

he demonstrated by reduetion ad absurdum,Yence A , the

kya

numher of monomialg in R having 3 odd-rank terms,is equal to

the rumber of atrictly increasing atrings with ¥ natural
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numbars (k < r-1).lence
k
= Card {te IN Jt:il,i?,..., -
ty<iy, ¥ie TRT}

A i,,1<i,<r,¥jeT,kx and

k,s 3
We observe that any strictly increasing string 11,...,ik is
uniquely decomposable into two strictly increasing substrings
containing odd and even numbers,respectively.Viceversa,two
such strictly increasing substrings may be combined uniquely
into an increasing string.Because in the set T,7p ={l,2,...,

Qp} there exist p even and p odd numbers,it reasults that there
p
are (s) strictly increasing substrings of s odd numbers

which are smaller than 2p,and (k—s) strictly increasing sub-

strings of k-8 even numbers which are smaller than,or equal to,

2p.It follows that L "
bea (2) ()

b)If k is even and s = k/2,we shall calculate first the num-
ber of strictly increasing strings il,...,ik of natural numbers
which are smaller than,or equal to,?p and which contain k/?
even numbera without verifying property (x).Such a string con-
tains alternating odd and even numbers.We denote d0 = il and

we observe that 1 < do < 2p-k+1.We also denote
dl = 1?—11, s ’dk—l = ik"ik-l

= =

For anv 1 (1 € i g k-l),di is odd.From 1) = d +dj+...+d) 4 <

?p,1t reaults that d1+ i +dk~1 < ?p—do.

denote even numhers,d{ = di+1'di =2 ?2.Then d'+d5+ Ve

Let d i

i

+dk—1 < ?p—do+k~1,wlthkf?e notation:

di=sl'di+d5=s?"'°’ s d{ =8 = j < ?p—do+k~1.
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Therefore if d_ is fixed (d e T,?p-k+1 ) we have established
a bijection between the seta of strings dl""'dk-l and 8150
191 where SyseeasTy g is a strictly increasing string of
even numbers smaller than,or eaual to.zp—d0+k~1.Thus for a
fixed do,the number of strictlv increasing strings 11,...,ik
of alternating odd and even numbers with i, = do is equal to
the number (denoted by Ndo) of strictly increasing atrings
R formed hy nonzero even numbers which are leas

than,or equal to, Xy = Op-do+k—1:

o]
Lde/?J Lxdolpj
5, zg i-1
My = =g g = (k—’>)
o i=k-1 o j=k-1

where Ny . denotes the number of strictly increasing strings
o

’.

ByreerorBy 4 having the above-mentioned properties and sk_l-J.
?p-k+1

et N = E ﬁd denote the number of strictly increasing
d =1 (o]
0

atrings i],...,ik having alternating odd and even numbers
which are less than,or equal to,”?p.We obtain from the sums,

after manipulating combinatorial formulas:

k-2 k-1 Kk
N = (?p-k+1)(k_9) + (?p—k-l)(k_p) + (?p—k«?)(k_? SN

2prk=-4A 2p+k 2p+k~2
a) 5 (;s)
+ = + &
k-2 ¥ k

We gubtract N from the numher of atrictlv increasing strings

il""’ik of k/2 even words,tn obtain

2n+k 2prk—-2
( 5 )9 _Ej_ _E_F__
Mera = \xso) - k)t K

¢) If k is odd and s = Lk/?j or a = [k/2],then by analogy
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with the preceding treatment we compute first the number of
strictly increasing strings il, ...,ik of natural numbers
which are smaller than,or equal to,?p,which contain s odd
numbers and which do not verify property (x%).We denote this
number by N' for s = Lk/?,_] and by N" for s = ﬁc/ﬂ,lt may be
observed from the expression of Ndo in the previous paragraph

that Ndo = Ndo—l for d_ even and nonzero.Wor s = k/? d =

i, must be even,and for s = rk/?ﬂl,do = 1, must be odd.Thus,

2p-k+l 2p-k
N' = z : Nd = z : Nd = N" =
do=2 o d0='l s}
d0 even ci0 odd
2p+k-5
k~2 k-1 2
« 2p-k+l : 2p-k-1 -
5 \kep) * EF = p) e k-2
29+k-—1)
2
= K %

The last result,obtained by means of rearranging combina-

torial formulas,indicates that for s = [k/2] or s = [k/2]
and odd k, (?Qﬂ(—-l)
) 2

p(p
Ae,e = lof\k-o

Starting from Newton's binomial formula and from the re-

k

lationship
K?p = (a+D)P(b+)P + 1 - R(a,b;2p)
we obtain in a straichtforwvard manner the final result:

P
P+ p+i-1 p+i
K?p(a.b) -Zajbj[( ?.1)4,( 23 )+ (de) (ﬂ+h)] (2)

=0
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2.3.CASE 2: r TS ODD

Tet r = ?p+l, pe [N ,e.q. catafusenes 1 , 2 or 3.We have:

K?p+1 = Pla,b:?p+l) = (a+1)p+1(b+1)p + 1 - R(a,b;2p+l)

The set of edees contains p+l odd-rank edges of weight a,
and p even-rank edges of weight b.
Por s € O,p we define T g IN as in the preceding case,

and with Ak € I[N we have:

, 8

R(a,b;2p+l) = Ay o a® pi-8
0g<sgp g

ke

H/A

a8

The coefficients Ak 4 AnE calculated analoszously to the
preceding cages hy computing the number of strictly increasing
atrings with indices il,...,ik which verify the property ().
We obtain thus:

p+l p
a) If 8 4 |k/?] and s # [k/?],then Ay g = ( )( )

8 k-8
[ (2p-d +k)/2J
o §-1
b)Y If k is evanqndssk/?,Nd = E k?)'
?p-k+? 2p+ o i=k-1 3
?
M= Ny, = ?( K ),therefor-e
d0=1 ¥ 2p+k
B (5
A = -2 "
k,k/? k/? k/? k i i
¢) Tf k is odd and g = [k/?],we ohtain N = _—> Ny =
d =1 o
o
?B*I;*l d, odd
: yand therefore

T (PR

T X is ndd and s = [k/2],~e ohtain:
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2p+rk-1
N = “d = 2 ,and thus
d0=2 o k
T 2ptk-1

o p+1 p) -]
Aes =\ 8 J\k-a) -~ K
Therefore for odd k and s = Lk/?J or s = [k/2] ,
p+1\ [ p pts
Be,e = | s )(k—a) & ( k )
Thus in the case of odd r = 2p+l,the final result is
P ' j+1 +j
313 p+j p+i+ ( p
K2p+l(a.b) = j§=0 a'by | 2 23)* 8| 2501 )" b 2441 (3)
The two formulas (2) and (3) may be unified,irrespectively

of the parity of r,into:

P .
¢ oz [ DF) . r+1, g
S adu 2prje(-1) el
Epla,b) = j-0 b ( 23) [ +p:. * '?T%%(“b) ¥

& a+(—1)r+1a ]
2

(4)

where p = lr/?J .

It can be demonstrated that from relationships (2) and (3)
one may obtain recurrence (1) in the particular case a=b=j.
The demonstration consists in showing both for r=2p+l and for

r=?p+2 that the difference below is calculated to be zero:

Kip2pel = %y,0p-1 = 34 5
This relationship is reminiscent of the Pibonacci recurrence,
and may qualify as a generalized ibonacci relationship; it
becomes a true Fibonaccli recurrence for j=1.0ther seneralized

"ihonacci numbers have been publishad in chemical contexts 10,

21-23



2.4 . RELATTORSHIP WITH THE SORDON-DAVISON ALGORITHM

We shall now examine binary regularly condensed catafuse-
nes with the help of the fGiordon-Davison (GD) algorithm l.Accor-
ding to this algorithm,the number of Kekulé structures increa—
ses on the i-th linear portion from the margin with a constant
increment q; on #Zoing from a benzenoid ring to the next one
in arithmetical progression.3y definition,qo=1 and 1-(0:2.

Lemma 1. The following recurrences hold:

2p
K?p+1 = K?p + a :§é:{}-1)lxi + 1] ,and (5)
> D e
?p-1
i+l
Kop = Kppp + D ;%1: [(-1) K - 1] (5)

for any 1 ¢ p < [r/2] .
Por demonstration,we ohaserve from the GD algorithm that
9y = Ki—l =~ 457 for 1€igr,

and that

= K

K?p+] 2p + aq?pp]

KPp ~ Koy * bqu for 1 € p< Lr/EJ .
from these three equalities,relationships (5) and (5') follow
easily.

Definition. We define the alternating sums of a regularly
condensed catafusene:
S; =1 =Ky % 4w + (1)K, Porlgigsr.,
ny definition,5 = 1l.We obaserve that for 1 < pg |r/2]

K =S -

2p 2p 3ap-1 and

K?p+l = S’p - 32p+1
liemma 2. The following equality holds for 2 < i € r-2:

3 - s o 3 .
Siep - (#b+2)5, + 5, , =0



The demonstration is hased on Lemma 1 and on the above

observation,via the results:

Sopsl = Sppo1 T 855
S?p = SEP—-? - ba?p—l

Lemma 3. We have

- (ab+?)Ki + Ki—? =0 for 2 £1ig r-2.

Kivo
For i=2 direct verification is possible.The proof starts
from the observation written as
e o 3
Ky = (=1) (bi—bi_l) forlgigr
and adapted to Ki+? and Ki-z also.Wow the result follows from

Lemma 2.

Theorem 2. For any r e [N ,

1 4
Kr(a,b) w [h1+ li&:llfi_ gl]ngfaj +[}?+ lii%llfi ga]ng/ZJ(E)

2

where % & 1 i (_1)i+1 ath

% Vab(ab+4)

% " (_1)i+1 ab(a+2)

2 Vab(ab+4)
x, w802 5 goytel Vab(abad) for 1 = 1,2.

8; = and

The proof starts with the characteristic equation for the
recurrence of Lemma 3:
%2 = (ab+2)x + 1 = O

(ab+2) X Vab(ab+4)

which has the roots X5 = 5 ,lence

p -
Kop = hlxg GRS for Depg|vi2) (7)

The congtants hl and hp are obtained from the initial condi-

tions: K, =2 and K, = abta+b+?
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14— . apd =1 - B

Vab(ab+4) Vab(ab+4)

We use the notation Dp = K2p+1 - KEp ,and from Lemma 3 we

hy

have
Dpey =(AP#2ID, + Dy 4 = 0 for O gpg [ r/2].
With the initial conditions DO = a and Dl & a?b+ab+a we obtain
from
- p p
Dp = B1X] t+ BaXp

the values of conatants &1 and &,

g o= 24 abla+2) and &, w8 abla+2)
L2 5 Vab(aber) 2 2 Vab(absh)
therefore _ P P

Kape1 = (By#hy)x] + (Bp#hp)x; ()

and Theorem 2 reanlts from (7) and (8).

Corollary. For any O € p g Lr/?J one obtains

P
K. = [1 N a+b } {(ab+2)+ Vab(ab+4) ]
=P Vab(ab+4) 2

P
" [ _ __asb ] [fah+?)- Vab(ade)] (9)
fab{ah+1) e ’
Similarly,
p
K = [2:2 " ?(a+b)+ah(a+2)} [(ab+2)+ Vab(ab+4)]
2p+l 2 2 Vah(ab+1) 2
f P
. [a_w i ?(a+b)+ab(a+?)] [(ab+2)— Vab(abVl)J -
? 2 Vablabhi1) 2

3.GENERALIZATION FOR ANY REGULARLY CONDENSED CATAFUSENE

We consider sequences of g linear segments in a zig-zayg
catalusene (or any isoarithmic system) which are repeated
p timee,with a pertion of t segments at one 2nd (0gtgs-1),

wiere sezment i consiats of ai;l 1inearly condensed oenzenoid



rings with the weight a; 2 1 for every i € 0,s-1 ,e.5. 6 .

The total number of straight stretches (segments) in the cata-

fusene is r = ps + t and the total number of benzennid rings
ia 5~1 t
6w e ey -
i=0 i=0
— B
TN PAaEN pmmmm————— - N 4 t-2
Cd \\ ’ \\ 4 \‘ A at_]
a5 ap ap g o 2
ag-2 8s-2\ fo s— a
21 a5 1 ag_\f,
ag 8s5-1\a s-1 ag o
0 1 2 vens p

. i .3 . . s
"g.?2.Tree T(G7) with weights a; of edgses corresponding
to the numbers of linearly condensed benzenoid

rings,

3y definition,operation & is summation modulo g :
X By =x+ty (mod s) ¥ x,ye Z .
Lemma 4.%or any 0 < pg(r/s) and 0 £ i € s-1,provided

that i+p # O,we have:
sp+ri-1

. . (_13yd+1 sp+i]]
sp+i Kspﬂ.—l i aim(-l)[ :§§;i: (-1)¢ Knp+i-j ¢ (-1)

K

The proof starts from the an algorithm which yields:

Agpei = Ksp‘i—l ~ A5pei-1 and

Ksp+i = Pgpei-l * A 1%0pai

for 0 g pg [r/s], 0 i< a-1, ispdo.
Ay combining the above two femaulas,and expanding stepwise

the summstion,Temma 4 is abtained.MNote that
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K = (-l)i(si-s forlgigr (11)

i—l)

Lemma 5. We have

Sap+i = ssp+i-2 T Big(-1) Ssp+i-1

for any 0 < p < Lr/aJ and 0 € i < 3-1 such that sp+i-2 » O.

The demonstration results by combining lLemma 4 with the

preceding observation.

Lemma 6. For 0 € p g Lr/sj -~ 2 and 0 € 1 € -1 the follo-

wing recurrence holda,where Rs L [xo"“’xa—l ]:

g
Sgpti - Rs(ao""’as—])ssp+sti + (-1) Ssp+23ri =0 3

R (Xo....,xs 1) = € X Kl"'XS 3l + el Z X. Xlel...xla(s 2)
-1 s-1
toeee b0 4 :E :X X101 + 8.y EEO;KI + 2e ¥

1+ ul)l
where the coefficients ey = 3

The first terms are:

Ry =a

0
R? = aoal+2
R3 = 858185 + 8, + 87 + a5
R4 = AgA Aoy + Ag8) + 818, + Uy + A48, + 2
R5 = 853185358, + 8,218, + a18534 F Ap3q3, + 833,30 +
tay + 8y +a, +ag+oa,
The proof atarts by applying Lemma 5 to 3 : where i =

gp+i
2,3,..0978,and combines all these relationships.

Theorem 3, For any C < p < Lr/sJ and 0 € i < s-1,using

for bYrevity the notation Rs in place of Rs(ao,...,as_l) we



have 4 o P
R+ VR%-4(-1)° B~ Vel -1
(1) s g (2)| s s
s = {——r—————- el o)
where
K 2K . - R.K
le) = El . s+i a1 ,and
2 VR§—4(~1)S

o . B e ~ G
i

2|/B%-a(-1)°

The proof starts from (11),which can be converted into:

s
sp-s+i RsKsp+i + (-1)7K

and 0O i s-1.

K spiarl = 0 for 1< pg LT/HJ -1

The: characterigtic equation ig
(—l)sx2 - Rsx + 1 =0 ,and itms roots are:

+ 2 8
R —-VRS - 4(-1)

1,2 = ?

Therefore

(1) .p (?)_p
Kopet = Q77 X + Qi"'%,

for 0 < p g |r/s] and 0 < i g s-1.

=

We compute K, and K,,; #ith the aid of initial conditions:

A ol -k,

(1) (2)
Qe = 4G X =Ry

and thus Theorem 3 is proved.
Although formula (12) holds for ary integer p > 4,it makes
sense to apply such a formula only for p > 2,i.2. when a se-
K

quence of s gtraight segments (in the dualist graph &7 of a

catafugene 1) is repeated at least twice.



x 07 =

Another observation for the numerical application of this
Theorem is that for computing Ky or Ks+i one has to sum all

distinct monomisgls ailai e aik with 0 il< 1o eee <y €

g-1 such that at least two of these successive indices ij
and 11+1 (1 £ j € k-1) have the same parity.It is recommended
to start for the small i values either with such a summation

or with the GD algorithm for obtaining the Ki and Ks+i values.

The generalized formula (12) may be particularized to the

case ¢ = ?,a_ = &,a, = b,which reduces to K = ab+2 and con-
1 ¥ 3

°
verts formula (12) into

P P
o o (1) | ab+2+ Vablab+4) (2)| ab+2- Vabh(ab+4)
K?p+i = iy ? ® g 2

ol{ls?2) .y & a+b

0 Vab(ab+4)
Q(l.?) _a+2 + 2(a+b)+abla+?)
. 2 Vab(ab+4)

where

in agreement with formulas (9) and (10).
4 .CONCLUSIONS

Joth the combinatorial formmlas (2)-(4),and the formula
(6) based on the 4D algorithm yield the same numerical results.
Thia can be verified for a = 2,b = 1,r = 8 ; in agreement
with manual implementation of the GD algorithm,KB(l,E) +
KB(?’I) = 362.%r an odd r = 3,a = A,b = 2,p = 1,one finds
gimilarly V3(4'?) = 50.

£ numerical verification of formula (12) for the case
g= 3,t = 0,p = ?,ao = Z,al = 3,32 = 1 yields:

R3 TAa8a, + oAy +oay + 8, = 12



2

. T Qiz)(1?+ > W37

98

|+

592.

Q(?)(l? s Vf{)g
T e ae

25
2 V37
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