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Abstract. Irreducible repeating sequences of binary symbols define all possi—
bilities for the stereochemistry of steroregular homopolymers or of poly-—
alkenamers, and for the wnstitution of binary copolymers formed from symme—
trical monomers. A theorem is demonstrated for the number N(n) of chemically
non-equivalent irreducible sequences of n binary symbols, coding R/S enantio-
meric centers in stereoregular polymers, E/Z geometries im polyalkenamers, or
the two comovomers in binary copolymers. The formula for N(n) makes use of
the Msbius function of the lattice of divisors, and is based upon Mibius's
inversion theorem. Irreducibility is defined with respect to decomposition
into smaller repeating subsequences, cyeclic permutation of the binary symbols
within the sequence or interchange between the two binary symbols. A computer
program implements the algorithm for computing the numbers N(n) up to a maxi-—
mal selected n value and displays the irreducible sequences. The asymptotic
behavior of numbers N(n) is described.



Notation

- : the set of words (sequences) with length n in the binary alphabet

An,p : the set of words with length n, which are decomposed into n/p
identical subsequences of length p (p € n) and p is minimal with
this property

An,n : the set of words of length n which are not decomposable into
identical subsequences {are non-periodic)

A, B : notation for cis/trans substituents in cycloalkanes

a,b,n,p,

Q.5.t } : are natural numbers

Cn : the set of sequences with length n which are cyclically equiva-
lent to their complement

d ¢ the length of a sequence or a subsequence

Ey Z : notation for diastereoisomers

F(n) : the n'th term of the Fibonacci series

f(x), g(x) : the functions from the Mdbius's inversion theorem

]n : the set of sequences with Tength n which have the property that
their inverse and complement are cyclically equivalent

Ky : the set of sequences with length n which are cyclically equiva-
lent to their inverse

M(d) : the cardinal of the set (K_ n An.d)

N(n) : the number of irreducible chemically nonequivalent sequences
with length n

m, r : abbreviated from meso and racemic

P(d) : the cardinal of the set (I n And)

Pi : a prime number

Q(d) : is the cardinal of the set {a E:An,d |o has the property /™)
that a may be decomposed into two subsequences with the same
length, being complementary to one another }

Ry 1S : denote chirality (rectus, sinister)

X : a partially ordered set

h¢ : a decimal digit

Xa.¥.U : arguments of the functions f, g, M

asa'sa”

11y o

s¢ st are words (sequences) in binary alphabet
gory
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9 Bi : binary digits
X : the null sequence
u(x,y) : MGbius's function
= : denotes cyclical equivalence
: denotes chemical equivalence
L¢3 : the bar symbol indicates the complement of a
& : this symbol indicates the inverse of «

1. Introduction

The mathematical modeling of polymers has been successfully developed
beginning with Flory.! Graph theoretical methods have been applied more
recently to polymers by Gordon.? There still remain, however, interesting
and challenging problems.

Depending upon the nature of the monomer, the polymer chain may possess
various features. TABLE 1 presents types of monomer units with corresponding
examples ; some of these types will be of interest for the following discussion.

TABLE 1. Types of monomer units in homopolymers and
corresponding examples.

Monomer units Symmetrical Non-symmetrical
Achiral -HZC-CHZ- -H,C-CMe, -
Chiral -CH——CH- ~H2C—CH—

COOMe éOOMe 0COMe

The present paper enumerates all possible repeating sequences in infinite
linear chains composed of two kinds of units, which can be modelled by binary
numbers. Such Tinear chains correspond to one of the following types of
polymers :
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1.1 Stereoregular polymers : Natta® and Ziegler" showed that the sequence of
stereochemical configurations in head-to-tail vinylic homopolymers e.g.
poly(propene) -(—CHZ-CHMe-)ﬁ may give rise to several types of stereoregu-
larities. They distinguished isotactic polymers with all chiral centers hav-
ing the same configuration (either R or S, e.g. ...RRR...), syndiotactic
polymers with alternating configurations, e.g. ...RSRS..., and irregular
{atactic) polymers. The first above example has R as repeating sequence ; the
second example has the dyad RS as repeating sequence.

An alternative description, generally adopted by polymer chemists, uses
a different notation, namely m (for meso, when two adjacent stereocenters have
the same configuration, e.g. the dyads RR or SS) and r (for racemic, when two
adjacent stereocenters have opposite configurations, e.q. the dyads RS or SR);
this natation can be obtained from the previous one according to the above
rules and ends up in a different string of binary symbols. Thus the octad
R.R.R.S.5.5.R.S corresponds to the heptad mmrmmrr since each pair of adjacent
capital letters is replaced by m when the capital letters are identical, or
by r when they are different. In the latter notation, there are n-1 symbols
(m and/or r) for an n-ad of R/S symbols, in most cases ; the situation is, how-
ever, rather complicated in the m/r notation because in some cases (depending
on the number and parity of r, m, and r + m numbers) on repeating the sequence
of m/r symbols it results that a string of n-1 symbols m and r corresponds
actually to (2n)-ad of R/S symbols.

Even journals and books have not yet adopted a unified approach.®~30
According to theory, for an n-ad of R/S symbols there are 2" possible se-
quences ; this number is halved on imposing one fixed starting configuration
or on agreeing to consider together sequences derived from one another by
R/S interconversion. This is actually what the m/r notation represents ; how-
ever, the 2"} sequences still have redundancies.

To avoid these complications we prefer to use the simpler R/S notation.

Both the practical importance of stereoregular homopolymers obtained
first by Ziegler® and then by Natta,® and the experimental detection of

repeating sequences ( dyads, triads, etc.) by ‘H~NMR,5'°, 13C-NMR and other
methods pointed out the fact that other types of stereoregularity, in addition
to isotacticity and syndiotacticity are possible, e.g. with repeating triad
sequences RRS. ®F-NMR spectroscopy for poly(fluorethylene) and poly(l,1-di-
fluorethene)'®,'! and especially cross-polarization magic angle spinning for
NMR of solid (crystalline) polymers have been extremely helpful.!?7!S In solid
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state the molecules are coiled in regular fashion, e.g. isotactic poly(propene)
has just one kind of CH,, CH,, and CH groups, whereas the syndiotactic polymer
has one kind each of CH and CH, groups, but two kinds of CH, groups. In solu-
tion the NMR spectra of stereoregular polymers are much more complicated
owing to various conformations (transoid, gauche) which coexist for each
stereoregularity.

The problem is to enumerate and generate explicitly all possible regular
infinite chains having repeating sequences : how many pentads, hexads, etc.
are possible, and which are they?

1.2. Stereoregular elastomers (polyalkenamers) :3'»3% natural rubber is cis-
-poly(isoprene) with all-Z configuration, Guttapercha is trans-poly(isoprene)
with all-E configuration, but synthetic poly{isoprene) has various contents
-and sequences- of cis/trans (Z/E) configurations at the double bonds. The same
is true for poly(l,3-butadiene) i.e. for polybutenamer (which can be obtained
either by polymerization of 1,3-butadiene or by ring-opening polymerization
of 1,5-cyclooctadiene) and for polypentenamer (which can be obtained by ring-
-opening polymerization of cyclopentene). The sequence of cis and trans con-
figurations along the ideal infinite chain of a polyalkenamer can give rise
to regularities if repeating sequences exist. Thus all-cis-poly(isoprene) has
Z as repeating sequence (monad).

In real poly(l,3-butadiene), in addition to the E/Z configurations of
1,4-polyaddition products, one may encounter 1,2-addition products. The situ-
ation for poly(isoprene) or poly(chloroprene) is much more complex because
1,4-addition products may be formed with different regioselectivities : tail-
-to-tail, head-to-head, or head-to-tail, each in E/Z configurations ; the
1,2-addition products again may have also various regioselectivities. We shall
only consider for elastomers the E/Z configurations of 1,4-poly(butadiene).

1.3. Binary awpolymers :°° the constitution of binary copolymers formed from
symmetrical monomers (such as ethylene, tetrahaloethene, etc. which cannot
yield regioselective polyadditions) in linear macromolecules is dictated by
the copolymerization mechanism. Homopolymers An correspond to a monadic repeat-
ing sequence, alternating copolymers have a dyad (AB)rl as the repeating se-
quence, etc. Of course, the problem is more complicated if there is the possi-
bility of regioselectivity e.g. with isobutene (head-to-head, head-to-tail,
etc.) and/or if the monomer(s) lead to chiral centers, e.g. for vinyl chloride
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or acetate. However, in the present context all regio- and stereochemical
considerations in copolymers will be ignored, so as to reduce the problem to
that discussed for the other two above cases. Future parts of this series
will consider both the problem of stereochemistry in copolymer sequences, and
that of ternary and n-nary copolymer sequences.

1.4. Regioselectivity in vinylic homopolymers (or in polymers from non—sym-
metrical olefinic monomers). When a vinylic monomer CH2=CHR such as vinyl
chloride (R=C1) gives rise to a linear homopolymer, most monomer units become
attached head-to-tail but a few may be linked in the opposite fashion. We may
generalize the problem, and ask whether one may enumerate all irreducible
possibilities for regularly repeating sequences, wherein the head-to-tail mo-
nomer units are symbolized by digit 0, and the reverted monomer unit is sym-
bolized by digit 1. The resulting repeating sequence is a binary number, e.g.
a strictly head-to-tail polymer chain has 0 as irreducible repeating sequence;
by interchanging the binary symbols we obtain 1 as the sequence for a strictly
head-to-head and tail-to-tail polymer chain. It is interesting to note that
the latter chain can also be described as an alternating binary copolymer of
ethene and 1,2-dichloroethene : more generally for other regularities, such
chains may also be viewed as ternary copolymers involving three monomers :
CH2=CH2, EH2=CHR, and CHR=CHR.

2. Formulation of the problem

The mathematical modeling of the problem under discussion in the present
paper consists in determining all possible sequences of given length n which
define by repetition chemically different infinite strings and which are not
themselves decomposable into smaller repeating subsequences.

We shall call such sequences irreducible ; they are not redundant in the
sense that they contain all the information on the sequence and nothing but
this information.

Although there exists a rich bibliography in this area, till now no
attempt has been made to enumerate and list these irreducible sequences. We
mention that for binary copolymers obtained from symmetrical monomers the
numbers of possible n-ads are quoted to be : 3 dyads (AA, AB and BB), 6 triads
(AAA, BAA, BBA, BAB, ABA, BBB), 10 tetrads, 20 pentads, etc. Likewise the



numbers of possible stereosequences are quoted to be 3 triads (mm, mr, rr),

6 tetrads, 10 pentads, 20 hexads, 36 heptads, etc. It is easy to see that

these numbers include three types of redundancies : (a) redundancy with respect
to reducibility to a lower n-ad e.g. AA and AAA are reducible to monad A ;

(b) redundancy with respect to cyclic permutation, i.e. to the starting point
of the n-ad, e.g. the triads BAA and ABA lead to the same infinite chain on
repetition ; (c) redundancy with respect to interchange of the two symbols,
e.g. the triads BAA and BBA.

One may establish a connection between this problem and the number of
diastereomers of substituted cycloalkanes having the same type of substituent
bonded to each carbon atom (this is related to the "necklace problem" for
beads of two colors, if the above redundancy restrictions are applied). In
this case from the preceding three redundancies we eliminate the second and
third ones. Thus, for (1,2...n)-n-cis-chlorocycloalkanes CanCln the diastereo-
mers are shown in TABLE 2, ignoring the ring puckering ; symbols A/B indicate
“up" or "down" (or E/Z) configurations. From the numbers of diasteromers
(which can be easily obtained by using Polya's theorem H) one has to subtract
the redundant or reducible sequences if one imagines that the n-ad correspond-
ing toeach diastereoisomer is repeated over and over again. Such redundant
sequences, decomposable into repeated subsequences, are indicated by brackets
in TABLE 2. The numbers of irreducible sequences whose notation is bracket-free
are indicated in the last column of TABLE 2. As an extension, for n = 2 one
may include in TABLE 2 the two diastereomeric 1,2-dichloroethenes, cis (44),
and trans (4B) ; the former is reducible while the latter is irreducible. Thus
we obtain for n = 2 through 6 the following numbers N(n) of irreducible se-
quences : 1, 1, 2, 3, 5, ... . One might wonder if we are to obtain the Fibo-
nacci sequence also for larger n values ; as it will be seen, the answer is :
No.

As a final remark, in TABLE 2 the first chiral polychlorocycloalkane is
the last formula marked with an asterisk. In the present paper we shall ignore
the chirality of binary copolymer sequences.
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TABLE 2. Diastereomers of substituted cycloalkanes.

- v Nos. of sequences
n Diastereoisomers
Diastereomers [N(n)
(ARA) AAB
(ARAR) ARRB AABB (ABAB)
A I e Bl N E
(ARAAAR) AAAAB AAABB AABAB
6 (ARAAAAY AAAAAB AAAABB AARABAB 8 5
(AABAAB) (ABABAB) AAABBB AABABB

Two sequences of n binary digits (or letters R/S, A/B, etc.) define by
repetion the same infinite string from a chemical viewpoint if
(i) they belong to the same class of cyclic permutations ; or
(ii) one is the symmetrical of the other relative to the middle of the sequence
(i.e. one is obtained from the other by reading it from right to left) ; or
(ii1) one is obtained from the other by permuting the binary digits.

For modeling consistently all three types of polymers mentioned in the
preceding section, we shall denote by the binary alphabet R/S : the binary
digits 0/1 corresponding to letters R/S symbolize either tridimensional con-
figurations in stereoregular polymers, or E/Z (cis-trans) configurations in
elastomers, or finally the two mers of binary copolymers.
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3. Number of chemically nonequivalent (irreducible) sequences of given length
n in the binary alphabet.

3.1. Mobius's function pu and the number of non-periodic sequences.

Let X be a partially ordered set. If for any =, y ¢ X the interval
[xs ¥ J={ulu€ex ,uzxandusgy (namely, the set of elements between
x and y) is a finite set, then X is called a locally finite ordered set.
Mdbius's function p : X ¥ X— N is defined in the following way :

1
—

n(x, x)

uix, ¥y} = - u(x, u) for x < y
X<u<y

u(x, ¥) =0 for x >y

3.2. Mobius's inversion theorem.

If X is a locally finite ordered set and if f(x) and g(x) are functions
defined on X such that :

fx) = ; g{u) for any x e X,

g(x) = u(u, x)f(u) for any x ¢ X.

then

3.3. Mobius's function of the lattice of divisors.

Let X be the set of natural numbers {1, 2, ...} with the order
relationship a < b if a divides into b (denoted by a|b). This set is par-
tially ordered because the divisibility relation is reflexive, antisymmetric
and transitive ; the universal minorant is number 1 which divides any number.
This ordered set is locally finite and is a lattice because for two natural
numbers, the smallest majorant with respect to the divisibility relationship
is their smallest common multiple, and the largest minorant is their largest
common divisor.

The Mdbius function of the lattice of divisors p(d, n) equals 1 for n = d;
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u(d, n) = (-l)k if n=p,p,... P * d with Py being different mutually prime
numbers (without considering number 1 as a prime number), and p(d, n) = 0
otherwise, i.e. when d does not divide into n or if in the expression of n,
at least two of the prime numbers Py and pj are equal.

The function defined above and denoted by p was introduced in 1832 by
Mobius for studying the repartition of prime numbers. In the following, we
shall denote by p only Mobius's function of the divisor lattice.

3.4. Number N(n) of non-periodic sequences.

Let n e N~ {0}, and let A = {og,a, .. a_ Jo; € {0, 1} v i e [0,n-1]}
be the set of words with length n in the binary alphabet. The void word is
AO = {a}.

Definition 1. Let a, 8 € A, where a = a0 ...0 5 BB, ...B . We define
an equivalence relationship between the two words a, B of length n in the
binary alphabet and we say that o is cyclically equivalent to B (denoted by
o = 8) if there exists p e [1,n] such that % =Bigp"? ie [0,n-1],® s the
addition modulo n operation.

Definition 2. We say that o = oo ...ap , € A admits period p (p e [1,n])
ifa; =0 q pY i e [0,n-1]. The smallest period of a is called the primitive
period of a.

Remark 1. A cyclically reducible sequence o € An is decomposed into n/p
identical subsequences of length p if p < n, where p is the primitive period
of o (p is a divisor of n).

Remark 2. Two cyclically reducible words belonging to the same class of
(=)-equivalence have the same primitive period p ; each class of (=)-equiva-
lence, formed from words of primitive period p, contains exactly p words.

If we denote by A
period p, we may write

n.p the set of cyclically reducible words of primitive

Al =2"= 2 |a |
" pln =~ ™P
Remark 3. The number |An pl of elements in the set An p does not depend
on n.
Taking into account that f(n) = 2" and that q(p) = |An pi we obtain by
using Mobius's inversion theorem:

| = 2 u(dp) » 28

|A
AL 1T
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The set An,n of irreducible words which cannot be decomposed into smaller
identical subsequences (this is equivalent to saying that the primitive period
is n) contains [An,nlln classes of (=)-equivalence having n elements each.

According to the preceding formula,

< diZ u(d,ny - 24

A,
n,n P

3.5. A formula for computing the number N(n) of chemically non-equivalent
EEgUEnCES.

Two sequences of length n are said to be chemically equivalent if they
define the same infinite string ; otherwise they are called chemically non-
-equivalent. In the above statement, "same" means "indistinguishable" if the
reading of the string is from left to right or vice-versa.

Definition 3. Let a sequence a € An,u B S R The inverse of a
is & = agay...ap ) nioa ¥ie [0,n-1].

Definition 4. The complement of o is @ = - SRR S where Ei #11 &
¥ie [0,n-1].

Thus inversion means the change in the direction of reading, and com-
plementarity means the permutation of binary digits.

By definition 3 and 4 we have :

i =A3;X=Aj;8=0;3;F=0a

where a% = o

Definition 5. Chemical equivalence, denoted by :, is defined on nn,n as
follows :
(1) a=B>a+BY¥a, Be An,n (a class of chemical equivalence is the union
of several classes of cyclic equivalence).
(2) 8+ a;¥ae An,n (any sequence is chemically equivalent to its inverse).
3Ya+as¥ace An,n {any sequence is chemically equivalent to its complement).
(4)a: pand B =y >a:y;0, By Y E An,n

Remark. The fact that the relationship + is an equivalence results from
(1), (4) and from the fact that = is an equivalence relationship.

Notation.
Kn ={a € An|& z al, (Kn is the set of sequences which are cyclically equiva-
lent to their inverse).
Cn = {g € Anlw = als (Cn is the set of sequences which are cyclically equiva-
lent to their complement).
In = {o e Anla = d}, (In is the set of sequences which have the property that

their inverse and complement are cyclically equivalent).
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To determine the number of chemically non-equivalent sequences (irredu-
cible sequences) means to compute the number of classes of (:)-equivalence.
We denote this cardinal :

N(n) = \An,n /%)

The following lemmas and corollaries were demonstrated :

Lemma 1. Let o e An. Then o e Kn iff there exist o' e As and a" € At
(s + t = n) such that a« = a'a", &' = a', and &" = a".

Corollary 1. 1f a € An,d N Kn (d|n), then o admits exactly n/d decom-
positions described by Temma 1.
Lemma 2. Let a e An 4o (u')n/d

. sa' ey o Then o e K iff o' e Ky,
Lemma 3. 1f M(d) = ||<'1 N A,

dl' then

M) = 42 u(and) % . E ol8/2] | ,lla-s)/z]
qld

Dss<gq-1

The demonstration is based on the fact that o e As and & = « indicate a
symmetric word relative to its midpoint. Therefore the number of such words
is 2r5/21 where [s/.] means the smallest integer greater than, or equal to,
s/z. The number of possible decompositions described by lemma 1 (for an n-digit
word with primitive period d) is exactly n/d. The number of possible decom-
positions into two words invariant to transformation, of lengths s and n - s,
is the product :

2r5/2] R zr("'s)/z]

The Mdbius's inversion theorem is applied and the lemma is demonstrated.
Corollary 3 :

M(n) = o u(d,m) " . 28721 | ,l(d-s)/2]
d|n d
0<sgdl
Lemma 4. Let o e An' Then o € In iff there exist a' € As’ oV & At (s +

+t = n) such that ¢ = a'a", &' = o' and 8" = &@".

Corollary 4. If o e An d n [n’ (d|n), then o admits exactly n/d decom-
positions described by lemma 4.
= @)V, o' e A Thenae I iffa’ el

Lemma 5. Let o € A o
n An,d! then

n,d?
Lemma 6. 1f P(d) = IIn
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P(d) = 2 ulad) - d - 2V
q|d
q even
The demonstration starts from the fact that when I" # @, nand s are

even. There exists a bijection between the set of s/,-digit words and that of
s-digit words having the property that they are invariant with respect to
complementarity of the inverse. According to corollary 4 and applying Mdbius's
inversion theorem, lemma 6 results.

Corollary 6.
P(n) = 2. u(dan) » 0o+ 29271

d|n
d even

Lemma 7. Let o e An . be a non-periodic word of length n in the binary

>

alphabet. We have a € Cn iff n is even and there exists a° e An/ such that
2
a = a’@°.

The demonstration consists of two parts for the direct and inverse im-
plication. In the former part, from the definition of the set Cn’ it results
there exists a natural number p, 1 € p < n, such that 1 - % %e p for any
i, 0 <1 < n-1 (we recall that % is the i-th letter of a);on choosing the
minimal number p having the above property, one shows that n is even and that
p = n/, by reduction ad absurdum. One observes thus that on complementing the
sequence, its two halves are permuted. The latter part of the demonstration is
trivial.

Lemma 8. 1f for a e An, n even, we denote by (») the property encountered
in Lemma 7 (3| «° € An/2 such that o = a°&°) then for a e An,d’ a = {u')n/d,
o' e Ad where d|n, the property (*) belongs to sequence « iff n/d is odd and
each sequence o' has property (*).

The demonstration that n/d is odd (hence d is even) succeeds by reduction

ad absurdum ; a consequence is the decomposition of sequence o into :

- 2d
W = an(at) {19/
= u-..(a.)(n-d)/Zd where o' = a"a'"’ ; (1", a''' e Ad/z‘
It results that a" =@'''. In other words, the subsequence in the middle

of sequence a has the property (*). Therefore, any subsequence o' has this
property (*).
Lemma 9. 1f Q(d) = |[{a e An,dlu has property (*)}|, then
ow)=%umm-ﬂ“

q
d/q odd
q even
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The demonstration starts with the observation that for odd d, Q(d) = 0.
We shall therefore admit that d is even. The number of words from the set An
which have the property (¥) is 2n/2. We have therefore

"2 = ) q(a)
d

n
n/d odd
and by applying Mobius's inversion theorem we obtain Lemma 9.

Corollary 9.
a(n) = dZ gres
n

n/d odd
d even

According to lemma 7, Q(n) = |An . (4-€
Theorem 1. Let n e N, n > 1.

n

N(n) =71;(dzu(d,n) 294 Ludn2¥z 4

In d|n
n/d odd
d even
" }I-.u(d,n)-% ; E 2[s/21,[(d-5)/2] -l-c%.._u(d,n) N '1>
n n
0<s gd-l d even

Demonstration.

On using set theory, the set An,n of non-periodic words is decomposed into the
following five subsets (complementation of set X is denoted as ¥ and [X| is
the number of elements).

S; =AM Ky Ncy
g% An.n n Kn n En
Sy = by n n x nc,
Sh = An,n n Kn n Ih

SS:An,nn KnﬂfnﬂTn
One observes that any two subsets are disjoint.

The demonstration then considers in turn each of the five subsets. In S,
the class of cyclic equivalence (CICyE) coincides with the class of chemical
equivalence (ChE). The class of chemical equivalence of a sequence in S, is
the union between the cyclic equivalence class of the sequence, and the class
of cyclic equivalence of its complement. In S, and S, the CIChE is the union
between C1CyE of the sequence with the CI1CyE of its inverse. Finally, in S_
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the CIChE is the union between the CICyE of the sequence, the CICyE of its
complement, the CICyE of its inverse, and the CICyE of the inverse of its
complement.

Taking into account that a CICyE in An - contains exactly n words, one
s
obtains the number of CIChE, N(n) :

[S.1 + Is5] + IS, [S4]
Nm)b%(%!+_iAusz:_+?L

After all operations have been completed one obtains
1
M) =L [ia 1 e + M) + p(n)]

and by means of corollaries associated to lemmas 3, 6 and 9 we abtain the
formula presented in Theorem 1.
Corollary 1. When n is odd, Cn = In = P and the above theorem reduces to

N(n) =+ {Z w(dan) (o + 20812 4 zd)]

4n | dn

Corollary 2. When n is even, the above theorem may be simplified to

N(n) ='1_ [Z I-l(d,ﬂ) . Zd + Zp(d,n) . Zd'/z "
4n ld|n dln

n/d odd
¢ Tone u(dn) - 22 e Ton e udn) - z(‘“”/z]
dln dln
d even d odd

3.6. Asymptotic behavior of the numbers N(n) of irreducible sequences.

When the word length n increases indefinitely, the number N(n) also
increases to infinity. According to Theorem 1 we obtain

Covollary 3. For n =, N(n) ~ (2"'2)/n, j.e. the number of classes of
; -2
(+)-equivalence (CIChE) tends asymptotically towards (2n }/n.
The demonstration consists in showing that

pin B - g

nae (20 %) /n
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4. Computer program for generating and enumerating_irreducible chemically non-

-equivalent binary sequences

A FORTRAN-IV computer program was devised for generating irreducible che-
mically non-equivalent sequences consisting of n binary symbols. The input
gives an integer upper limit NMAX for n. The output presents the (:)-equiva-
lence classes for increasing n values and within each class it prints the ir-
reducible binary sequences in lexicographic order using R and S as binary
symbols (letters R and S correspond to digits 0 and 1, respectively).

The algorithm generates sequences in the class of (+)-equivalence, and
tests them sequentially. If there exists a smaller sequence (with respect to
lexicographic order) which is (:)-equivalent with the tested sequence, the
program goes on to test the next sequence ; otherwise the tested sequence is
displayed as representing an irreducible member of this class of (:)-equi-
valence. The program is based on the fact that a sequence which is (:)-equi-
valent to a given sequence may be obtained from the latter by successive appli-
cation of inversion, complementarity and/or cyclic permutation.

For minimizing the time and memory requirements of the program, we used
the following observations :

(a) It is sufficient to test only those sequences whose last digit is 1.

Indeed, should a € A s and O™ 0, then the cyclically permuted word
a' = o oo is lexicographically smaller than o (only in on case a = a',
namely when all digits are zero).

(b) It is sufficient to test only those sequences which have digits 0 in the
first two positions. Indeed, for o e An,n P33 3 as Qe e o0t and o #0

or o # 0, then we have two possibilities of lexicographic order < :

eca =1, then@ <«

®if oy = 0 and o,= 1, then there exists no i e [0, n-2] such that ag = Oy
(otherwise on effecting a cyclic permutation and possibly also a complementa-
rity, we obtain a sequence having zeros on the first two positions). According
to observation (a), b = 1, therefore o is periodic with a period o' = 01 so
that it need not be tested. Thus, according to observation (b), one has to

test only those sequences generated in the class of (:)-equivalence whose first
two positions have zeros.

(c) Since the (:)-equivalence relationship is defined on An,n (words of pri-
mitive period n), only the non-cyclic words need be tested, i.e. those words
which cannot be decomposed into smaller identical subsequences. According to
observation (b), should the given sequence be decomposable into identical sub-
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sequences of lengths 1 or 2, then these subsequences could only be 0 and CO,
respectively. Therefore a given sequence undergoing testing cannot have a
period smaller than, or equal to, 2. This fact is reflected in the program by
considering only numbers larger than, or equal to, 3 as divisors of the se-
quence length.

The printing is effected with the help of an alphabetic vector ALPH
implementing the binary correspondence 0 <+ R and 1 <+ S. For the sequence of
length 1 the printing is effected before entering the first loop of the pro-
gram. The notation for variables used by the program is explained in its ini-
tial comment. Labels have the following significance :

1Y - labels for F@RMAT statements

2Y, 4y, 5Y, 6Y - usual labels

3Y - labels for statements indicating the end of a DO loop (Y is a

decimal digit).

Figure 1 presents the listing of the program. The block diagram is pre-
sented in Fig. 2. A few variables in the program are abridged for convenience
as fal1ows; S = SEQBIN ; S1 = SEQ1 ; S2 = SEQZ ; A = ALPH ; D = DIV.

5. Discussion of the results

Fig. 3 presents the result for NMAX = 10. The same results., including
also higher N values, may be presented as a counting series "

x4 xP 4 x4 2x" 4 3x% + 5x5 4 8x7 + 14x® + 21x® + 39x'0 + 62x'1 + 112x'2 +
+ 189x'? + 352x'" + 607x'° + 1144x16 + 2055x'7 + 3885x1% + 7154x!% + ...

It may be seen that N(n) deviates from the Fibonacci series for n 3 8,
and that for n = 3 through 6 we obtain the values indicated in Table 2 for
N(n). It may be verified that for large n values the ratio between two suc-

cessive N(n) values tends towards 2, in agreement with the asymptotic formula :

n]imm [N(ml)/m(n)] - nh‘m [Zn/(m—l)] =2

-+ ©

Thus the numbers N(n) of irreducible binary sequences increase faster
versue n than the Fibonacci series, F(n), whose ratio between two successive
terms is the Golden Ratio (v5 + 1)/2.



c
c
4
4
4
4
c
4
¢
1
€
[
¢

Lid

- 20 -

F1GURE 1. The listing of the program

TRPSPE TR e PRt e P O RN G PR ERE BT e kg S E K E T P E R Ry

* TME PROGHAM PISPLAYS SEQUENCES OF GIVEN LENGTH,

L]
»
*
L

2 % 9 % w @

v

-

10

ARIABLES ARER
SEQBINZVECTOR OF BINARY SEQUENCES
SEQ1,SEQ2MVECTORS Op AWXILIARY SERAUENCES
ALPNIVECTOR OF ALPHABETICALLY ORDERED SEQUENCES
FOR DISPLAY
DI¥SVECTOR OF pIVISORS OF THE SEQUENCE LENGTH
NzLENETW OB SEQUENCE SBEING ANALYZZp
NMANZMAXIMAL SEQUENCE LENSBTH
AUXeZsTT0doKelLeM, N1, NLONP, NR NS, SP ARE AUXILIARY
VARTABLES AND COUNTERS,
L R T T e L L h o
INTEGER SEQ@BINC30),SEQ1(50),SEA2(30),ALPH(36),
*RIVCI0) . AYX
BATA NS NR,SP/*S°.*R*:" */
REARC10S.10)INMAX
FORMAT(12)
MRITEC108,11)NR

-

L4

11 FORMATC//11X,*POSSIBLE SEQUENCES OF LENGTM N & 1°

1

31

*, " ARE(//13XeA1)

B8 30 Nmd,NMAX
WRITEC108.122N
FORMATC///11X,"POSSISLE SEQUENCES OF LENGTH °,

N B, 02, AREzY /)
NL=1
N1=0
SEQBINC(N)I®T
T1=N=1
B0 31 I=1.I1

SEQRIN(I) =0

CONTINUE
KaQ
I1aN/2
BO 32 i=1.11



32
29
21

22

24

(1]

23

26

ar

28

0

IFCNGNE,{N/T)w]) &0 To 32
Kok#q
DIV(K)=I
CONTINUE
I=K
IPCILLT,1) GO0 TO 4V
421
IFCJ.BT,DIV(I)) &0 TO 26
M=l
IR(M,GE_N/DIVC(I)? &0 TO 23

IRCSEQBINC)) JEQ,SEQRINCI+M»O LV I}

ie To 25
I%I=1
80 TO 21
CaNTINUE
M3MeT
a0 1O 24
CONTINUE
Jz Jeq
Go To 22
CONTINUE
duN=1
SEQPINCIIn1=SEQRINCY)
IFCSENRINCS) NELO) 6D TO 238
ey
Go To 27
CONTINUE
TFCJ,6T,2) GO TO 29
LP(N1 Ea,0) GO TO 30
G0 TO 55
CONTINUE
=0
NPmO
p0 33 1=.N
SEQ1¢I)=SEQBINC])



33
41

45

3

b1

LY

30

w3

b

L1

(1]

3y
“7

- 29 =

CONTINUE
IFCL.EQ,U) GO TO L&
L=y
IF(NP,EQ.N=1) GO TO S6
NPuNPed
AUX=SEQ1(1)
I1aN=q
P8 34 I, 1IN
SER1(I)=mSEUTI(I+1)
CONTINUE
SERT(NI=AUX
FFCSEQTCI)  NELSERQT(2)) 6O TO 41
IF(SEA1(¢1),EQ,0) GO TO 42
PO 35 I=1.N
SEa2(I12=1-SEQ1 (1)
CONTINUE
GO TO 43
CONTINUE
DO 36 I®14N
SEQ2(I)RSEQI(L)
CONTINUE
CONTINUE
80 1O 48
CONTINYE
IFCSERT(N) NE.SEQ1{N=12) GO TO 45
IPLSEQI(N) EV,0) GO TO 46
B0 3% I=1,N
SEQ2(1)=1*SEQ1(N=I+1)
CONTINUE
80 1O 47
CONTINUE
80 39 I=1,N
SEQ2(IYRSEQT(N=]*1)
CONTINUE
LONTINVE



4“8

50

oy

356

3t

L1}

35

13

51

30

= 93 <

L=1
CONTINUE
I=2
IFRCILET K) 80 TO &1
IFCSEQBINCI)=SEQ2(I)) 61,49.20
I=zl+1
6o ro 50
CONTINVE
B0 37 [=aY«N
ALPHINTI®I)ANRe(1=SEQRINC(I))+NSwSEQBINCI)
CONTINVE
N1=NT1+N+1
LEL TS & ¥
p0 60 IaNT .M
ALPH{I)®5P
CONTINVE
N1=M
IF(NL,NE,3) G0 TO O
CONTINUE
WRITEC108+413) CALPH(I) I=1,NY)
FORMATL/13X,3641)
IF(NY1,LT,36) GO TO 30
N1=0
NL=1
40 TO ¢6
CONTINUE
NL=aNL+1
80 TO <6
CONTINUE
sTOP
END
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FIGURE 2. Block diagram ; (S) is the decimal number corresponding to tne
binary sequence S ; : = indicates assignment ; « indicates the transfer posi-
tion by position, of elements belonging to one vector into another vector.

INITIALISATIONS

[ PRINT SEQUENCE OF LENGTH 1 |

S IS INITIALISED WITH 0
AND S(N) : =1

CREATE D, I.t. THE INCREASING
VECTCR OF DIVISORS OF LENGTH N

IS THE SEQUENCE
S REDUCIBLE ?

MODIFY S SUCH THAT
(5) INCREASES BY 2




FIGURE 2 Continued.

—

CIRCULAR PERMUTATION BY
ONE POSITION OF S1

CREATE AND PRINT THE

ALPHABETIC VECTOR A




FIGUHE 3. Alir irreduciole sequences with n< 10

POSSTULE SEQUENCES OF LENGTHW N = 1 ARE;

POSSIBLE SEQUENCES OF LENGTH N = 2 ARE:

L]

POSSIBLE SEQUENCES OF LENGTHW N = 3 ARE:

POSSYSLE SEQUENCES OF LENGTN N = & ARE:

XRRS HRES

POSSIBLE SEQUENCES OF LENGTH N = 5 AREj

RRRRS RRRSS RRSRSE
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POSSIRLE SEQUENCES OF LENGTW N = 6 AREg

RRRRRS NRRRSS RRRSRS

KRRESS RRSRSS

POSSIBLE SEQUENCES OF LENGTW N = T ARE;

KRRRRR > RRRRRSS RRRRSRS
RRRRE53 RRRSARS RRRSRSS
HRSRRSS RRERSRS

POYSIBLE SEQUENCES OF LENGTW N = ¥ ARE:

RRRRRRUS RRRRRRSS RRRRRSRS

KRRERSSS KRRRSARS RRRRSRSS

KRRRSS5S RRRSRRSS RRRSASRS

MRRORSSS KRRSSRSS RRSRRSRS

MRSHSRSS KRRERSSRS



POSSIBLE SEQUENCES OF LENGTW N = ¥ AKES

KRRRRRKRS KRRRRRRSS RRRRRRSRY

KRRRHRSSS KRRRRSRRS RRRRASRSS

KRRRRSSSS RRRRSRRRS RRRRSRRSS

KRRRSRSRS RRRRSRSSS RRRRSSRSY

KRRERRRSS KRRSRRSRS RRRSRRSSS

KRRORSRSS RRRSRSSRS RRRSSRRSS

KRSRRSRSS KRBRSRRSS RRSRSRSRS

POSSIWLE SEQUENCES OF LENGTW N = 1U ARES

RRRRRRKRRS RRRRRRRRSS RRRRKRRSKS

WRRRRRRSSS WRRRRRSRRS RRRRRRSRSS

KRRHRRS5SSS RRRRRSRRRS RRRRRSRRSS

KRRRRSRSRS KRRRRSRSSS RRRRRSSRSS

KRRRRSYSSS KRRRSRRRSS RRRRSRRSKS

KRRRIRRSSS KRRRSRSRSS RRRRSRSSRKS

KRRRSR5SSS RRRRSSRRSS RRRRSSRS3S



siTOP™

KRRRSRESSS

KRRIRRRSRS

KRRIRREASS

KRRIHSKSRS

NRRSRSSSRS

KASRRSRRSS

MRSASRSRSS

29 &

RRRRSSRRSS

KRRSRRRSSS

HRRSRRSSKRS

RRRSASHESS

RRASSRRESS

NREASRSSRS

RRRRSSRSSS

RRRSRRSRRS

RRRSRSARSS

RRRSRSSRES

RARSSRSRIS

RRSRRISRSS

RRSRSSRRYS



10.
11

12.

13.
14.

15.
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