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Abstract. A systematic procedure for determining select eigenvalues by
embedding smaller substructures onto larger ones 1s described. Embedding
of pentadienyl is unique because the eigenvector coefficient of the central

carbon vertex has exactly twice the magnitude of each end carbon vertex.

A graph G is defined in terms of a set V(G) of vertices and a set E(G)
of edges consisting of unordered pairs of vertices. For a subgraph G~ ,
V(€)EV(G) and E(C)EE(G) where the components or fragments of a graph or
subgraph are connected pieces. An embeddable graph G can be broken into
fragments collectively called a spanning subgraph ¢ where v()=V(G). The
fragments will be K, and Pi components where the latter will possess common
eigenvalues. If a bipartite subgraph G* of a graph G can be embedded
(covered) by alternating K, fragments with m identical F fragments with
alternating signs, then F |JKUF_UkiU++* C 6*S6 and F+ﬂ|<, Nr Nk N--e=
K) represents a node position (vertex) which has zero coefficients in the
corresponding eigenstates. Also, the sum of the associated coefficients of
vertices attached to each Ky node vertex must equal zero which is fulfilled
if the fragment signs alternate. Tree graphs with linear paths on n vertices
(carbon vertices) without branches {i.e., having only degrees-1 and -2) are
designated by P" and cycles on n vertices by Cn. A path on one vertex (P1)
is the complete graph K; and a path on two vertices (P2) is the complete
graph K;. A fragment subgraph is a graph that can be dissected from a larger

graph by removing or deleting the K) vertices, called nodes. Embedding occurs
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when a set of identical fragment subgraphs (or fragment subgraphs with common
eigenvalues,g) are obtained by dissection of a larger graph. For example,
removal of the central vertex from Ps gives two K, subgraphs, and, therefore,
Ps can be embedded by K;; in this example the node is also a cut vertex and

both K; and Ps have g==1.

In a prior paper, the use of embedding for determining select eigenvalues
as an aid in determining the total characteristic polynomial of small molecules
was introduced.l The purpose of this presentation is to emphasize and illustrate
the use of embedding in determining select eigenvalues principally on large
molecules. The reader should review the rules for embedding given in the lead
paper under subspectral components.l
Pentadienyl Embedding

The embedding of the symmetrical substructures of methyl radical, ethene
and benzene is straightforward. However, the embedding of fragments with
different kinds of vertices in polycyclic systems needs to be done go as to
match up equivalent positions through each node position. This is aptly illus-
trated by the embedding of pentadienyl onto larger alternant molecules.

Consider the examples presented in Figure 1. The three monocyclic isomers of
phenylpentadienyl(l to 3)all have the eigenvalues associated with pentadienyl.
Here the l-positions of the (+)-pentadienyl fragments can coincide with the

1-, 2-, and 3-positions of the (-)-pentadienyl fragment, but as soon as one

goes to the dicyclic systems(d and §)the situation changes. 2-Ethenylnaphthalene
(4), the analog of I, has no eigenvalues in common with pentadienyl, whereas
l1-ethenylnaphthalene (6), the analog of 2 does. If one examines the coef-
ficients of the normalized wave function for the eigenstate of ¢=/3B in the

pentadienyl fragment (5), one see that the coefficient magnitude for position-3
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Figure 1 . Pentadienyl embedding.
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is twice that of position-1. Since proper embedding requires that the sum
of the coefficients of all vertices attached to every zero node position be
zero, in I the position-1 coefficient of the (-)-fragment must be two times
larger than the coefficient magnitude on position-1 of the attached (+)-frag-
ment. This would require that the position-3 coefficient in the (-)-fragment
of 4 to be four times larger than the position-1 coefficient of the (+)-frag-
ment; thus the sum of the coefficients through the additional node in 4 can
not sum to zero and is not a proper embedding. In 3 the position-3 coeffi-
cient of the (-)-fragment is twice the magnitude of the coefficient value
for position-1 in the (+)-fragment. This means that the magnitude of the
position-1 coefficient on the (-)-fragment of 6 matches the magnitude of the
position-1 coefficient of the (+)-fragment, and therefore 6 is a proper em-
bedding. The embedding of pentadienyl fragments in polyhexagonal systems is
unigue because the position-3 coefficient of this fragment is exactly twice
the magnitude of the position-1 coefficients.

A gingle example of mixed embedding of a trimethylenemethane diradical
fragment with a pentadienyl is presented by 7 in Figure 1. No examples of
similar mixed embeddings in fused polyhexagonal systems were found. Figure 2
presents examples of pentadienyl embedding in an assortment of large
molecules. For those molecules that were not radicals, the Kekule” numbers
(K)were invariably divisible by three. Four of the five last structures in
Figure 2 had two distinctly different(and mutually exclusive)embeddings of
pentadienyl and are therefore doubly degenerate in these eigenvalue sets.
Alsc, placement of polyene substituents on any primary or secondary node
position in the examples given throughout this paper will not alter the

embedding pattern shown.
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Figure 2 . Example pentadienyl embeddings.
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Ethene Embedding and Selective Lineations

Whenever a benzenoid structure can have a succession of edges bisected
with a straight line drawn from one side of the molecule to the other with
the terminal rings being symmetrically convex relative to this line, then
those rings intersected by the line can be embedded by a perpendicular suc-
cession of ethene substructures and the benzenoid structure as a whole will
have at least one eigenvalue pair plus and minus one. This straight line is
deigned a selective lineationZ For each distinct selective lineation present
in an alternant hydrocarbon there will be a corresponding eigenvalue pair of
€=+1.08. Thus coronene and phenalenyl both have three selective lineations
and are triply degenerate in €=+1.0B, perylene has four selective lineations
and is quadruply degenerate in e=+1.08, and biphenyl has two selective linea-
tions and is doubly degenerate. This is illustrated below with perylene where
only one set of perpendicular ethene substructures are explicitly shown. Since
embedding is a sufficient but not necessary requirement for the presence of a
set of eigenvalues, note that selective lineation only prescribes a minimum

degeneracy. 2

Selective
Lineation
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Other Examples of Embedding

A general procedure for determining eigenvalues by inspection is as
follows. First, determine if the molecule has a mirror-plane fragment.

If it does see if the eigenvalues of the mirror-fragment can be found in
standard reference aourcea._ Second, determine if the molecule has a selec-
tive lineation or is a radical(polyradical)structure. Third, successively
determine if the polyene structure(and/or mirror fragment)can be embedded
by ethene, allyl, 1,3-butadiene, pentadienyl, benzene, or naphthalene. To
expedite this third step, note that benzene and allyl embedding requires
that the number of Kekule” structures(K)associated with the benzenoid under
investigation be divisible by two and pentadienyl and naphthalene embedding
requires that K be divigible by three. 1In the fourth and final step, in-
vestigate the possibility of embedding a large molecule with a more com-
plicated substructure. Examples of embedding on large benzenoids are presented
in Figure 3.

Examples of naphthalene embedding are presented in Figure 3. Both ovalene
and tetrabenzo[a,c,h,j]anthracene can be embedded by phenanthrene, and both these
molecules have phenanthrene as a mirror plane fragment. The following benzenoid
hydrocarbon has no mirror plane benzenoid fragments but can be embedded by

phenanthrene as shown and, therefore, has the eigenvalues of

phenanthrene in its spectrum.
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Figure 3 . Illustrative embeddings of allyl, butadiene, benzene,
and naphthalene fragments on benzenoid hydrocarbons.
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Succesgive Incremental Embedding on Polymer Strips

Figure 4 gives two infinitely long polymer strips. Disregarding end effects
the upper nonclassical polymer strip can be embedded by pentadienyl and its in-
creasing longer homologs shown. For this infinite number of embeddings to be
valid, it must be concluded that this polymer strip has a conductien/valence
band electronic etructure? Determination of the eigenvalues for the first few
pentadienyl homologs allcows one to qualitatively see that for this polymer there
is an energy gap between 0 and 1.08 and that continuous band exists from 1.08 to
>2.18. Thus this polymer may be ferromagnetic due to the electron spins but it
can not be conductive. Similarly, the classical acene polymer strip can be
pragreasiveiy embedded by increasingly longer acenes, and determination of all
the different embedding eigenvalues up to pentacene allows one to qualitatively
agcertain that no energy gap exists between the valence and conductien bands of
this polymer strip. Therefore the acene polymer strip should be electrically

conductive but not ferromagnetic.

Embedding on Nonalternant Hydrocarbons

Although embedding is strictly applicable to alternant hydrocarbons,
a daughter nonalternant hydrocarbon created by adding a polyene bridging
fragment to the node positions of a parent alternant hydrocarbon would still
possess the same embedding pattern. Thus, fluoranthene (Figure 5) is a non-
alternant hydrocarbon having eigenvalues of g=t1.0B because ethene can be
embedded on the alternant naphthalene fragment where the 1,8-node positions
possess a phenylene bridge forming the pentagonal ring. Other examples are

also presented in Figure 5.
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Figure 4. Repetitive embedding in infinitely long polymer strips.
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Figure 5. Examples of embeddable alternant nydrocarbon fragments with
nonalternant hydrocarbon attachments on ncde positions of the
former.
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Summary

Every molecule can be embedded by itself. Molecules with a mirror plane
bigsecting only vertices can be embedded by the mirror fragment where the bi-
sected vertices become nodes. Alternant hydrocarbon molecules can be
frequently embedded by smaller fragments. Nonalternant hydrocarbon molecules
can sometimes be embedded in the alternant hydrocarbon fragment if it is
linked through ncde positions to the nonalternant porticn. Placement of
heteroatoms or polyene substituents at node positions dees not change the
embedding of a molecular graph. The process of embedding is equally

applicable to both the HMO and the extended HMO methods.
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