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Abstract: Well-known failures of the Hickel topological
Hamiltonian prompt us to develop an alternative approach to
correlation between the topological features and electronic
structure of molecules. The topological spin (TS) Hamilto-
nian appears to be one of those alternatives. The applica-
tion of the connected moments expansion (CMX) makes the cal-
culations tractable even for large molecules. Major differ-
ences and similarities between the Hickel and TS methods are
pginted out and pathways for further development are under-
lined.

I. WHY ANOTHER TOPOLOGICAL HAMILTONIAN ?

The failures of the topological Hiickel Hamiltonian can be
classified into those we know the reason precisely and those
we do not now exactly what is going on. The first class
comprises difficulties associated with the fact that the
eigenfunctions of the Hiickel Hamiltonian are antisymmetrized
products of spinorbitals and therefore they not allow for
the electron correlation. Because of that we can expect
everything but a proper description of the states with a
different multiplicity. Being more explicit , we should not
be surprised at the troubles with the topological resonance

energy when applied to radicals [1] as well as at the fact
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that the topological predictions , even if usually confined
to the ground state , can provide incorrect state
multiplicities [2]. In the 1light of that the incorrect
prediction of a vanishing singlet - triplet splitting in the
absorption spectra appears obvious.

The second class of invalid results from the Hickel
theory is even more troublesome. The most notorious example
is the 1l.4-divinylbenzene / 2-phenylbutadiene pair of
isospectral molecules with the same spectrum of Hickel
eigenvalues , but pretty different PE spectra [3]. In this
case it is of course easy to suspect that this is another
manifestation of the breakdown of the Koopmans theorem , but
in fact the reason for such a dramatic difference between
theoretical predictions and the realm of experimental data
remains more or less unaccountable.

Bearing in mind the above facts we realize that another
alternative for a topological Hamiltonian is badly needed.
There is also another aspect of the whole problem : having
another topological Hamiltonian derived we would be able to
verify the (correct) predictions of Huckel theory.

We believe that the topological spin (TS) Hamiltonian ,
although not perfect , can serve as a valuable alternative

for the standard Hickel one.

II. THE TS HAMILTONIAN
Suppose we deal with a molecule possessing N carbon atoms

and M carbon-carbon bonds. From p, atomic orbitals we
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construct the Slater determinants assigning a spin & to
[N/2] electrons and a spin B to N - [N/2] of them. There are
cfN/2] such determinants and this set forms our basis. Using
the quasi-degenerate perturbation theory , Maynau and
Malrieu [4,5,6,7] were able to show that the matrix element
of the effective pi-electron Hamiltonian between the
determinants |P> and |Q> reads :

Hpg = - Z:gij<P|ij’><ij'|Q> + <P|Ij><Ij|Q>
i-j

- <P|iJ><TIj|Q> - <P[Ij><if|Q> . (1)
In eg. (1) the sum runs over all bonds i-j. For P = Q , the
bond i-j contributes to the sum with factor gjj only if the
determinant |P> has a spin alternation on this bond. For
P # Q@ , there is a contribution of -9ij only when the
determinants |P> and |Q> differ exactly by a spin
alternation on the 1i-j bond. The factor 9ij is always
positive and depends on the bond length between atoms i and
j. The choice gij = -1 results in a purely topological
Hamiltonian having a positively valued ground state energy.
There are several definite differences between the Hiickel
and TS topological Hamiltonians. We list in Table 1 some of
them. First , in the Hickel picture , the total pi-electron
energy (Epi) is a sum of appropriate eigenvalues , whereas
in the TS picture , Epi is equal to the smallest eigenvalue.
This means that standard methods used in the chemical
topology to approximate Epj are useless in the case of the
TS Hamiltonian. Second , the TS Hamiltonian always provides

us with correct ground state multiplicities. Actually , we
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TABLE 1. COMPARISON BETWEEN THE HUCKEL AND THE TS
TOPOLOGICAL HAMILTONIANS

PROPERTY HUCKEL HAMILTONIAN TS HAMILTONIAN

electron included partially included

correlation through effective explicitly

Hamiltonian

basis atomic py-orbitals Slater determinants

functions constructed from
atomic py-orbitals

dimension of N cii/2]

the basis set

eigenvectors molecular pi-orbitals wvalence bond (VB)
wavefunctions
eigenvalues orbital energies energies of the
neutral
electronic states
the ground the Hartree product the eigenfunction
state wave- of molecular with the lowest
function spinorbitals energy
the ground from the Hund rule directly from
state incorrect predictions calculations
multiplicity very common or from the
ovchinnikov rule
the total a sum of eigenvalues the smallest eigen-
pi-electron over the occupied value

energy (Epj)

orbitals

a fundamental

inequality for

Epi

the McClelland upper

bound [9)
Epy < (2MN)1/2

{N = the number of the carbon atoms ,
carbon-carbon bonds)

Epi > M

M - the number of the
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TABLE 1. (continued)

approximations
for Epj

inequalities [10]
integration of the
model function [11]

approximate numerical

integration [13]

moments of the adjac~-

ency matrix [14]

spectral density [15)]

additive nodal in-
crements (ANI) [16]
others [17]

the connected
moments expansion
(CMX) [12]

ionization
potentials

related to the eigen-

values via a linear
correlation

not available

electronic
transition
energies

only qualitatively
from differences
between orbital
energies

related to the
eigenvalues via
a linear regression

bond orders

related to the
bond lengths

related to the
bond lengths

partial
atomic charges

substantially
overestimated

always zero

major
deficiencies

electron correlation
not included and
therefore incorrect
predictions for

state multiplicities ,

transition energies
and bond orders in
excited states

only two-body
interactions taken
into account and
therefore invalid
results for four
membered rings
molecules

only neutral states
included explicitly
and therefore zero
partial atomic
charges predicted

even need not pursue any calculations. There is a simple

ovchinnikov rule that enables us to find a correct value of

multiplicity by direct counting of "starred" and "unstarred"

vertices in the molecular graph [8]. On the contrary , the

MO predictions based on the Hund rule notoriously give
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incorrect answers (the cyclobutadiene molecule is a typical
example) [2]. Third , the effective Hamiltonian (1) was
derived neglecting several many-body contributions and
therefore is inappropriate for systems possessing four -
membered rings. For more specific information about various
the reader should consult the original literature [4-7].

Taking equation (1) into account , direct correspondence
between the TS Hamiltonian matrix elements and the topology
of molecule is easily demonstrated by the equation [12] :
Hpo = AjyUbd (2)
where A is the adjacency matrix and the four indices tensor
U is defined by its components :
ubd = <P|iF><iF|Q> + <P|Ij><Ij|Q>

- <P|iJ><ij|Q> - <P|Ij><ij|Q> . (3)

Note , that the tensor U depends solely on N and is indepen-
dent of the topology of molecule. The whole information

about topology is comprised in the adjacency matrix.

IITI. THE CMX APPROXIMATIONS

The Hamiltonian (1) appears to have a very serious disad-
vantage that is a huge number of the basis functions needed
to construct the secular problem. For example , for the sys-
tem possessing 20 atoms (N=20) there are ($§)=184756 deter-
minants. This fact disables us from calculating the molecu-
lar properties without assistance of powerful computers. Be-
cause of that we seek approximate methods that can provide

estimates for the ground state energy with the knowledge of
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some graph invariants. It is well known that such method are
quite successful in the case of Hickel Hamiltonian. Unfortu-
nately, as pointed above , all the standard tricks that work
for the Hiickel method are useless for the TS Hamiltonian.
Very recently we have developed the connected moments
expansion (CMX) techniques [12] that allows us to express
the ground state energy of any quantum-mechanical systens in
terms of the Hamiltonian moments :
<uks> = <p|fRk|g> , (4)
where |@g> is any trial function having a non-zero overlap
with the ground state ket. The explicit formula reads [12]:
E =1y - I5/I5 = (1/I3) (IpI4 - 18)2/(I315 = IF) = ... , (5)

where :

I, = <H> ; (6)
I, = <H2> - <H>? ; (7)
Iy = <H3> - 3 <H2><H> + 2 <H>3 ; (8)

Iy = <H% - 4 <HI><H> - 3 <H2>2 + 12 <H2><H>2 - 6 <H>? ; (9)
I5 = <HS> - 5 <HA><H> - 10 <H3><HZ> + 20 <HI><H>2

+ 30 <H2>2<H> - 60 <H2><H>3 + 24 <H>5 , (10)

Appropriate choice of |@> is a delicate matter , even if
it is known that the series (5) is always convergent. First,
the trial ket should enable us to compute the moments , (4),
in a feasible way. Second , the trial ket should not sub-
stantially deviate from the exact ground state wavefunction,
if we wish a fast convergence of (5). In the case of TS
Hamiltonian the following choice seems to offer a good

compromise between those two requirements.
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For a given molecular graph we assign [N/2] « and N-[N/2]
@ spins to the vertices in the way that minimizes the number
of adjacent vertices having the same spin assigned. Then the
resulting maximal spin alternation determinant gives rise to
the largest diagonal matrix element of the TS Hamiltonian.
Usually there are several such determinants and , as has
been pointed out in ref. [6], they have a major contribution
to the ground state wavefunction. Let us consider the case
of alternant , singlet ground state hydrocarbon. There are
two maximal spin alternation determinants with the diagonal
matrix element egual to the number of edges (M) in the
molecular graph. Each of these determinants itself is not an
eigenfunction of the spin 82 operator , whereas their linear
combinations are. Interesting enough , there is not a big
difference in the convergence of the CMX series , when only
one determinant instead of a linear combination is taken as
|@> (Table 2).

Considering the context of Table 2 some details have to
be pointed out. The CMX(n) approximation corresponds to
truncation of the series after n first terms. Thus , for
example , eq.(5) represents CMX(3) approximation. A general
algorithm for generation of higher terms of CMX can be find
in ref. [12b]. Fortunately , as was shown in ref. [l2a] ,
there is no need to go beyond the CMX(3) level , when the
approximate energies are scaled through the formula :

Epi = 1.032 Egyy(3) + 0.411 . (11)

Such approximate energies reproduce exact ones within 0.3 %.
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TABLE 2. TWO EXAMPLES OF CONVERGENCE OF THE CMX SERIES FOR
TWO DIFFERENT TRIAL FUNCTIONS USED

3-METHYLENE-1.4~PENTADIENE 1.2-XYLYLENE
CMX(n) approx. energy CMX(n) approx. energy
n one det. two det. n one det. two det.
1, 5.00000 5.00000 b 8.00000 8.00000
2 7.50000 11.25000 2 11.20000 11.20000
3 6.80624 6.16154 3 10.37151 10.87519
4 7.11610 8.74736 4 10.65167 11.03037
5 7.08732 6.76927 5 10.62475 11.02959
6 7.15363 8.02424 6 10.67441 11.04834
7 7.14491 7.09833 7 10.66543 11.06819
8 7.22024 7.71837 8 10.72923 11.05048
9 7.04322 7.27388 9 10.44771 11.05081
10 7.33280 7.57735 10 10.82155 11.04968
11 7.59520 7.36324 11 10.93007 11.06151
12 7.43379 7.51077 12 10.88588 11.04272
13 7.47650 7.40748 13 10.90783 11.02953
14 7.46383 7.47899 14 10.90728 11.03472
15 7.47094 7.42910 15 10.92108 11.03358
16 7.47034 7.46372 16 10.90890 11.03383
17 7.47221 7.43961 17 10.95848 11.03376
exact: 7.44949 exact : 11.03380

1V. PERSPECTIVES OF THE TS HAMILTONIAN

The TS total pi-electrons energies exhibit several
properties which parallel closely those associated with the
HUckel energies. The branching of molecular graph decreases
Epj- Among benzenoid hydrocarbons the phene isomers are
predicted to be more stable than the acene analogues., There
are , however , some differences. In particular , we studied
several cases of the "isospectral" molecules and always
found that they have definitely different TS Hamiltonian
spectra and thus different Epi- Therefore we conjecture here

that "TS isospectral" molecules do not exist.
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Another point that requires further clarification is the
calculation of the connected moments. For one - determinant

function , the three first I's are given by [1l2a] :

I;=1I, =M (12)
and
I3 = —4M 42N - 2v3 , (13)

where v3 is the number of vertices of degree three
(branching points) in the molecular graph. However , the
general formula for I's is still unknown. Knowledge of such
a formula would open a route to calculation of the TS
resonance energy (TSRE). For this purpose one would have to
evaluate several connected moments with and without
contributions from cyclic conjugation and then calculate the
respective energies from CMX. The calculated TSRE would
probably reflect stabilities of (poly)radicals much better
that TRE does.

Eventually , it is obvious that there should be several
approximate or exact relations between the eigenvalues of
the TS Hamiltonian and topological invariants. Another
problem worthwhile to investigate 1is relation between the

bond orders calculated within TS and Hiickel frameworks.
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