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ABSTRACT: A statistical relation between electron affinities
and single ionization potentials given by Parr and
Bartolotti is compared with a statistical relation between
single and double ionization potentials of neutral atoms

and molecules given by Tsai and Eland. It is shown that

both relations are consistent, although the exponential

form of the energy function proposed by Parr and Bartolotti
would give an inconsistent relation. Further statistical
relations and implications for the electronegativity equa-

lization principle are discussed.

Experimental and theoretical interest in electron affinities

of atoms and molecules/l/ and the still limited amount of data
available/2,3makes it desirable to have, in addition to computa-
tional methods, also qualitative, in fact even statistical rules
for their estimation and correlation to other data. For instance,
Lowe/4/ gave qualitative rules for relating molecular electron
affinity values to the electron affinities of the corresponding
atomic constituents. Also relations between electron affinities
and ionization potentials are of interest in this respect. One

step in that direction has been taken by Myers/5/ who considered
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the electron affinities of atoms in relation to the ionization
potential of their neighbour, in the table of elements, with
atomic number larger by one and found smooth curvilinear rela-

tions for vertical groups in the periodic table.

A statistical relation between the electron affinity (EA) of
a neutral atom to the ienization potential (IP) of the same

atom has been established by Parr and Bartolott#6/, namely

EA = (0.12 + 0.07) IP (1)

It is easy to check that this can be generalized to hold not
only for atoms, but also for molecules: Evaluating the EA/IP
ratio for all neutral atoms and molecules for which IP- and

EA-values are given in a recent reference book/3/ ,we find

EA = (0.13 £ 0.09) IP €2)

Tt is noteworthy that a similar statistical relation had been
proposed to hold between the double-ionizaton potential (DIP)
of a neutral atom or molecule and its single-ionization poten-
tial: Tsai and Eland/7/found, by evaluating average and standard
deviation of the DIP/IP ratio for a large number of systems,

that in the statistical sense

DIP = (2.8 + 0.1) IP (3)
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It is the purpose of the present note to discuss the consistency

of equ. (2) with equ. (3).

The need for such a discussion becomes apparent if one considers
the arguments of Parr and Bartolotti/6/and tries to use them

to derive equ. (3) in the same way they derived equ. (1). They
proposed that the total energy of a system with N electrons,
E(N), should be an exponentially decaying function of the number

of electrons, i.e.

E(N) = A exp [- h:(N—Z)] + B (4)
where Z is the number of electrons when the system is neutral
and A,B, Y are constants. For X they obtained 2.15 ¢ 0.59, and

from the definitions EA = E(Z) - E(Z+1) and IP = E(Z-1)-E(Z)

follows equ. (1). The same argument would yield

DIP

E(Z-2) - E(Z)

1

(e2¥ _13te¥ -1)~1 1P

= (9.58 t 5.06) IP (5)

which is in striking disagreement with equ.(3).
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Let us point out immediately, therefore, that equs. (2) and
(3) are indeed consistent in the sense that without knowledge
of the specific properties of the systems involved one would
infer one from the other.

To show this it is convenient to introduce in agreement with

the concepts of statistical analysis /8/ the following

Definition: Two statistical relations

pi(xl,...,xn) =0 3 A=l
constraining the values for a set of n physical observables
xj, are called consistent (in the sense of extrapolation) if

there exists a (n-2)-th order collocation polynominal f(j) =

F(xl.,..,x ,j) such that

n-1
X, = F(xl""‘xn-l’j> ; j=l...n-1
and that the two equations

P.

1 (Xl""'xn—l‘ F (xl,...,xn_l.n)) = 0 s od =1, 2

are identical within the error limits.
We can then state the

Proposition: The two statistical relations
E(Z) - E(Z+1) - (0.13£0.09)[E(z-1) - E(2)] = 0
E(2-2) - E(Z) - (2.8£0.1) [B(2-1) - BE(Z)] =0

are consistent in the sense of the above definition.

Proof: Applying Sterling's formula for a second-order colloca-
tion polynomial to the total energy of a system with Z+K elec-

trons we obtain
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E(Z+K) = E(Z) + (K/2) [E(Z+1) - E(2-1) ]
+(k?2/2) [E(z41) - 2E(2) + E(z-1)]. (6)
Inserting this with K=-2 into the second relation yields

the first one within the error limits.

Remark 1: Equ.(6) yields an extrapclation formula:

DIP = 3 IP - EA (7)
Since in writing down the collocation polynominal we have
ignored any specific properties of the systems, equ.(7)
will not be a good approximation for individual systems,
but should become valid for averages over many systems

(as considered here).

Remark 2: Equ.(7) is related to Pariser's integral approxi-
mation /6/. Writing down the expression for the first DIP
in a frozen-orbital Hartree-Fock approximation, assuming
a closed-shell system with nondegenerate ground state,
gives /7,10/

DIP =~ 2 IP -V (8)

where V is the Coulomb integral describing the repulsion of

two electrons in the highest occupied orbital. Equ.(6) leads
then to Pariser's approximation, V = IP - EA, which can thus

be justified in the statistical average. The argument remains
valid also if correlation is taken into account in a quasi-par—
ticle picture, by multiplying the integral with the coresponding

renormalization factors /ll/.
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Corollary: Further relations can be obtained for multiple
ionization: If Z is replaced by Z-1 in equ.(6) one obtains
TIP =~ 3 (DIP - IP) (9)
where TIP = E(Z-3) - E(Z) is the triple-ionization potential
of the system. With equ.(1) follows TIP:‘—f(B) DIP where
f(3): 3(1-IP/DIP). Generalization of the argument to m-fold

ionization yields the recursion formula
1ot sy g O pplo-1) (10)

)

wiigwe TEE E(Z-m)} - E(Z) and f(m): 3(1_1/f(m—1)).

Equ.(10) will obviously progressively underestimate the f(m)
with inecreasing m. For instance, employing equ.(1) would give
f(3) 1.93 and f(a) = 1.44, while the actual numbers obtained

from the statistics of the data given in ref./3/are

3 _ 908 & 097 mng £ = 1,98 & 078,

We return now to the consistency of the Parr-Bartolotti
rule with the Tsai-Eland rule. The conclusion from the
consistency of those relations and the disagreement of

equ.(5) with the empirical Tsai-Eland rule is that is is the
exponential form in equ.(4) for the energy function which does
not permit a consistent prediction of multiple ionization poten-
tials. The reason for proposing equ.(4) was/6/that it would sa-
tisfy the geometric mean principle for electronegativity equal-

ization/2/(that the electronegativity of a molecule can be ap-
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proximated by the geomelric mean of the original atomic electro-

negativities). It should be mentioned, however, that the classi-

cal supposition/l3, that the energy is a second-order polynomial

in the variable (N-2),

E(N) = a (N-Z) + b (N-2) (12)

(with constants a,b), does not viclate the consistency relation
equ.(7) and would fulfill though not the geometric, but a cor-

responding arithmetic mean principle for electronegativity equa-

lization.

Given the importance of electron affinities and ionization
potentials (mostly treated only by standard computational
schemes or accurate experimental measurements) on Lhe

one hand, the desirability of phenomenclogical rules for
relations between them on the other hand, and regarding
the consequences for the electronegativity equalization
principle, we have here a perhaps interesting crosslink
between areas which in part belong to the quantitative,
-measuring or computing-, branch of physics and in part

to an area of qualitative predictions, valuable for

instance in chemical physics /¥ /.
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