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A3STRACT

A new invariant T=(x,y,z) of benzenoid systems
and some of its basic properties we2re given in [(1].
In this paper we give the necessary and sufficient
conditions for a positive integer triple T=(x,y,z)
to correspond to a benzenoid system. Furthermore
the necessary and sufficient conditions for T to
correspond to a pericondensed benzenoid system is

also given.

Let B be a benzenoid system[z] which has at least
one Kekulé structure., Let K be a Kekulé structure of

B and let E{X) be the set of those edges of B which
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cerrespond to double bonds in K. The set E(K) can
be partitioned into three subsets,E1{K),E2(K) and
E3(K), sucn that all edges from Ei(K),i=1,2,3,ar@
mutually parallel. The number of elements of E1(K),
32(3} and EB(K) is denoted by x,y,z,respectively,
and by convention xg<ysz. The non-decreasing posi-
tive integer triple (¥%,v,z) is written by T. In (1)
we prove the following.
Theorem 1. For a benzenoid system B with a Kekulé
structure K the triple T is independent of K.There-
fore T is an invariant of B and we may write T=T(B).

By theorem 1, any benzenoid system B with a
Kekulé structure possesses a triple T(B)=(x,y,z).
3ut the inverse of this statement is not true,i.e.,
any positive integer triple T=(X,y,z), needs not to
correspond to a benzenoid system. For example, the
triple T=(2,2,2) does not correspond to any benze-
noid system. It is natural to propose the following
problem: What Lype of triples correspond to benzenoid
systems?

For convenience, we define & as the set-of those
triples which each corresponds to a benzenoid system.,

Let‘;'j?] be the subset of I such that T¢7; if and only
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if T corresponds to a catacondensed benzencid system
yand let 95 be tle subset of & such that Téig if and
only if T corresponds a pericondensed benzenoid sys-
tem, It is not difficult to see that 3{095:5(91’@‘2;4?).
In {1) necessary and sufficient conditions for the
triple (x,y,z)efﬁ were given as follows:

Theorem 2. (1) T=(x,y,z) corresponds to a cataconden-
sed benzencid system if and only if x+y+z is odd and
*+y2z+1,

(ii) Let X,Y and Z be arbitrary non-negative inte-
zers, Then T corresponds to a catacondensed benzenoid
system if and only if x=Y+Z+1,y=2+%+1, z=X+Y+1,

In the present paper we give necessary and suffi-
cient conditions for the triple (x,y,zkfrl Furthermore
the necessary and sufficient conditions for the triple
(x,y,z)eﬂé is given.

First we -ive the following lemmas.

Lemna 3. (1) The following two statements are equivalent:

(1) x=1;

(ii) B is the linear polyacene Ly (see Fig.1).

A benzenoid system is said to be of type I if it
can be dissected by parallel horizontal lines L;,i=1,

2,.se3t, such that it decomposes into t+1 paths. The
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two top and the two bottom paths must be of even
lenzth and pairwisz equal. All other paths must be
cof odd length. For illustration see Fiz.2(1). The

structure of the benzenoid system of typeI is clear

from Fig.2(2).

Sceco0a

P.9421, P+123

(1) Type I ,t23 (2) Type II
Fig.2
Lemma 4, (1) The following two statements are equiva-
lent:
(1) x=2;
(ii) B 1s a benzenoid system of type I or of

type II.
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Lemnma 5. Let T=(x,y,z) , where x+y-1s< z<xy. Then
PET

Proof. TFor any T=(x,y,z), where x+y-1< z< xy, we
can find a subsystem B of the benzenoid system shown

in Fig.3, such that T(B)=(x,v,z).

Fig.3 Fig.4

Lemma 6. Let (x,vy,z)€d.Then (x+1,v+1,2),(x+1,y,2z+1)
(x,y+1,2z+1)eJ,where if (x+1,y+1,z) and (x+1,y,z+1)
are not non-decreasing we will put it in order.
Proof, Let B be a benzenoid system corresponding to
(x,v¥,z), where hexagons are drawn so that x counts
the vertical double bonds. On the boundary of B we

can find a vertical edge 2y whose end vertices have
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derree 2 in 3 (see [2,794])).

Let S1 be the hexagon of 3 containing e1,and let
3" be the benzenoid system obtained from 3 .y adding
a4 hexazon 53 such that %{f131=e1. Then T(B')}=(x,y+1,
24+1), nawely, (x,y+1,z+1)€T. By the same reason, we
have (x+1,y+1,2), (x+1,y,z+1)e T,
Lemma 7. (i) (x,x,x)eJ, if and only if x#2.

(ii) T=(x%,y,y)edJ for x<y, if and only if
T4 (2, 333
Proof. It follows frem Fig.4 that (x,x,x)&J for
%x#42. Therefore, by lemma 6,we also have that (x,y,y)
€J for x42,ysx. For T(B)=(2,y,z), by lemma &, 3
can only be a benzenoid system of type I or of type
I in Fig.2. It is not difficult to verify that (2,
2,2), (2,3,3)¢9, and (2,4,4)€T, So,from lemma &,
(2,y,y)eT for y2 4.
Lemma 8, (i) (2,2,z)eJ if and only if 2<zs4. (ii)
(2,3,2)eT if and only if 3¢z<6. (iii) (2,4,z)eT
if and only if z#9,11. (iV) (2,5,z)€J if and only
if z#12. (V) (2,v,z)ed for yz26.
Proof. Since for T(3)=(2,y,2), B can.only be a ben-
zenoid system of type I or of typelI (see Fig.2),

combining lemma 5 and 7,it is not difficult to verify
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that (i) and (ii) hold.

(iii) By lemma 5 and 7, (2,4,z)Y for 4<z<8,
For z>8, we construct two graphs (see Fig,5) which
show that (2,4,4+2m)eT, and (2,4,13+2m)eT , m= 0.
In other cases z=9,11. By lemmna 4, it is easy to
verify that (2,4,9),(2,4,11)47 .

(iV) since (2,4,10)edJ and {2,4,12+m)e T, 20, by
lemma 6, (2,5,11), (2,5,13+m)e€T .For 5¢2<10,(2,5,z)
€J,by lerma 5,7. The rast is (2,5,12). By lemma 4,
we have (2,5,12)&T.

(V) By (iV) and lemma 6, (2,6,z)ed for z#13.
Fig., 6 shows that (2,6,13)eJT .30 (2,6,z)eT for all

236, Furthermore, by lewma 6,(2,y,z)€J for y26.

P

T(B)=(2,4.4t2m) , T(B=(2,4.i13+2m) ,
mzo mz 0
Fig. 5

Lemma 9. (i) (3,3,2z)¢7 if and only if z#11;
(i1} (3,y,2)eT for y=4h,
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Proof. (i) 8y lemma 5,7, (3,3,z)€T for 5¢2¢9.(2,2,3),
(2,2,4)eJ" induce that (3,3,3),(3,3,4)eT .Fig.7 shows
that (3,3,13+2m), (3,3,8+2u)eJ",m20. The rest is (3,
3,11). e prove that (3,3,11)¢J in the Appendix.
(ii) By (i) and lemma 6, (3,4,2)€T for z#12.3ut
(3,4,12)eT ,by lewma 5. So (3,4,z)€9 for all zzb4,

Furthermore, by lewma 6, (3,y,z)¢J for all y24.

T(B)=(3tP, 4+q , 6tp+q) ,
T(B)=(2,6,13) pzo, gzo0 , p<qtl .

Fig.6 Fig.8

(D
EE L)

T(B)=(3.,3,8t2m), mzo. T(B)=(3,3,1312m) , m=0.

(1) (2)
Fig.7
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Lemma 10. (x,y,z)e€T for x4,
Proof., By (4,4,4), (3,4,2)eg, we have (4,4,z)eT .

Thus, by lemma 6, (4,4+m,z+1)€J ,m20,that is, (4,y,2)eT"

Now we get the following theorem.
Theorem 11. T=(x,y,z)¢J if and only if one of the

following conditions holds:

%=1 el x=2 *=2
(1) { (da) {y—? or {y=3 or {yzh

=z 2<z¢h 3¢zs6 ,

o x=2 x=5 x=3
or | y=5 or{ (iii) Yy=3 or{ (iv)x24

y26 y2h

2x12 ;5 211,
Now J7, and T~ have been determined, by theorem

2 and 11.

In order to get the necessary and sufficient con-

ditions for T=(x,y,z) to correspond to a pericondensed

benzenoid system, we need only to determine the set
TINT5s since Jo= TNINT,} -
Theorem 12. J"4\ T, = {(1,y,y)}U {2,y,y+1)}v{(z,
3,33 451550} »
Proof. By lemma 3, {(1,v,v)}<JT )\ T>.

In the proof of lemma 8,9 and 10,we can see that
for %22, if z#x+y-1 and (x,y,z)#(3,3,3),then (x,v,z)
€9,. It is easy to verify that {(3,3.3)', £35 5,5)} &
I\ T, Fig.8 shows that (%, v, x+y=-1)€ :’72 for xz 3,

z$9,11
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y z4. The rest is {§2,y,y+1)}. By lemma 4, it also is

not difficult to verify that {F2.y,y+1!}Ciﬁ\9§.
Finally, we have the following theorem.

Theorem 13, T=(x,y,2)J if and only if one of the

following conditions holds:

X=2 x=2 X=2 X=2
(1) 4 y=2 or 4 y=3 or 4\ y=4 or {y=5
z=4 N Z=5,6 2 2%5:9!11 y 2#6112’
x=2 *=3
*x=3
or {y=6 (ii) 4y=3 or { (igi) a2h ,
y=h,
z'£y+1 ] 2?!535:11:
Appendix

In order tc prove that (3,3,11)¢fr, we need to
define a class of benzenoid systems.

A benzenoid system B is said to be of type III,
as shown in Fig.9, if B—{?1,e2,e3,e4} has three com-
ponents H',H", ™, where H' and H" are two linear
polyacenes each containing two hexagons, and by dele-
ting all vertical edges H® can be decomposed into
r paths (rz2) of odd length whose intial edges in

the left have the same direction as shown in Fig.9.
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Fig.10

Lemma 14. For a benzencid system 3 with a Kekulé
structure K, T(8B)=(3,3,10+m),m30, only if B is a
benzenoid system of type III.
Proof, We put B on a plane so that the edges in
E,(K) are parallel to the vertical line, and the
edges in E2(K) are parellel to the edge By in Fig.10.
Let li,i=1,...,t, be the horizontal lines pas-
sing through the centers of hexagons of B,and let
T; be the set of vertical edg:s of 3 which are inter-
sected by li. Let H*¥ be the subgraph of 3 obtained
by deleting all vertical edges from B. Then the sub-
graph of HX lying at the upper bank of 11 is denoted

by Ho, the subgraoh lying between li and 1, is denoted

i+
by Hi for i=1,...,t-1, and the subgraph lying at the
lower bank of 1, is denoted by H,. Clearly,any com-
ponent of Hj,j=0,1,...,t,is a path. Suppose a path

Py, i Hj is on the perimeter of B, When the region

Jk
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abova(below) ij is the exterior face of 3,we call

P., the top(bottom}path of B, Obviously a top-path

Jk

P of 3 must be of even length, Therefore,it is not

Jk
difficult to see that \TJ.H{] E1(K)|=‘! (see Fig.11).
T ij is a bottow-path, then lTjn 51(1!.)[:1. Since
x:lﬁq(K)1=5,the nusber of top-paths and bottom-paths
ol B are at most three.Thus for any j, Hj has at most

two components.

W o Ml e i
S T e T T s
2 T 1 T T T

T I

Fiz.11 Fig.12

(=R

H ag f\c

L% hG has exstly two components P01 and Poz,then
i, NE;(K) |=1. Ctherwise i, also has exactly two com-
nonents Fﬂl and F12,and P01 and P11 have the same

o
length, so,F » and Py, (see Fig.12). Clearly ,then
y >3, a contradiction. Therefore, B can only be a
graph shown in Fig.13. But,if p=g=r=1, T(B)=(3,3,3),
both

z<10, and otherwise y»3. So we have thatAHO and Ht

have exactly orne component each.

g90¥08C
0080 |
1) (2)

Fig.13 Fig.14
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Suppose that 3 conteins exactly a top-path and
a bottom-path. If t=3, B can only be a graph shown
in Fig.14. It is easy to see that if y=3, then 29,
and otherwise y>3. If t=3, B can only be a graph
shown in Fig.15. Clearly, y>3.

Now we can say that B has exactly three top-paths
and bottom-paths.Without loss of generalily,we assume
that B has two top-paths and one bottom-path. It is
not difficult to see that the upper bank of 12 is a
linear polyacene with two hexagons, and
ITy NEC)I=1, HH U B0 E(K) =2, {HU Iy} 0 Ej(K)l
=2, Thus ITtﬂE1(K)|=1 and 1{112u ...UHt]ﬂEZ(!{)lﬂ.

Let Tt={e1,ez,...,er} (see Fig.16).Ttn E1{K) can only

be e, 4 or e, otherwise thflEE(K)|> 1.

Fig.15 Fig.16
If e & E1(K), a éEZ(K),then b€E1(K),and {c,d}
forms a top-path of B,so 3 indeed is of type I.For

the other cases it is also not difficult to verify
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that the conclusion is true.

Now, by lemma 14 and Fig.7, we can assert that

(3,3, 11 45T
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