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Abstract - A systematic terminology for classes of regular ¢-tier
strips is given. It implies the designations: hexagonm, goblet,
chevron, pentagon, streamer and tower. There are six classes of
mirror-symmetrical seven-tier pentagons. For three of them, which
have not been treated before, the combinatorial formulas of Kekuléd
structure counts are derived. CHART I (pentagons) and CHART II
(pentagons without apex) summarize the main results. Different
methods are demonstrated for the derivation of K formulas, where
K is the Kekulé structure count. The method of fragmentation is
employed in different versions, and also a new method based on the
John—-Sachs theorem.

INTRODUCTION WITH DEFINITIONS

The studies of classes of pentagon-shaped benzenoids (or simply
pentagons) have revealed many challenging procblems. In the previous parts
of this article series]'-3 we considered some classes of mirror-symmetrical
oblate pentagons,l mirror-symmetrical prolate pentagon52 and triangles.3

A pentagon belongs to the regular ¢—tier strips. Assume a member of
this class to be oriented in the conventional way, where the t rows are
arranged from the bottom to the top. Two rims are distinguished as consis—
ting of the first and last hexagon of each row; they are the left and right
rim, respectively.

Here we are especially interested in t-tier strips where one (or both)
of the rims consist of a two-segment chain. Such a two-segment chain is
characterized by an LA—sequences equal to LpALq, where p+q = t-1. We will

define a protruding rim and an intruding rim. If the angularly annelated
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(A-mode) hexagon of a left rim is the extreme left hexagon, or if it is the
extreme right hexagon in a right rim, the rim is protruding. Otherwise the
rim is intruding. This terminology is convenient for a precise definition
of the main classes of regular t-tier strips:

A hexagon has two protruding (two-segment) rims. A goblet has two in-
truding rims. A chevron has one protruding and one intruding rim. A pentagon
has one protruding rim and a streamer one intruding.

A regular t-tier strip with no two-segment rims is a tower. Rectangles
and multiple chains in general or zigzag chains in particular are typical
examples of this wide class of benzenoids.

In the present work we have concentrated upon mirror-symmetrical
seven-tier strips.There are six classes of streamers and six corresponding
classes of pentagons of this kind.

The enumeration of Kekuld structures of the streamers is quickly done
with. They are either essentially disconnected!‘ or non-Kekul@an. In the be-

low figure the cases of n=3 are depicted.

;:k(z.,n) Zi(ﬁ,n) Zl(d:ﬂ)
n
£%(4,n) g a,m £"(4,m) = Calh.n)

- L(n) L) = L(2,)-L(2,n) = L(3,7) -L(3,m
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The general formulas for the Kekulé structure count (K for arbitrary n)

read:
ktziea,m) =0 W
Kz ,m) = & o)) (e ? 2
k2% ,m) =0 ¥
ks e,m) = 0 )
RIZ™(4,m)) = (ne1)2 (5)
KR m)) = o) 2 (102) % (e (6)

The problem of Kekul& structure counts for the corresponding penta-

gons (depicted below) is far more difficult.

05 (4,m) ' (4,n) ol 4,n)

e
e

P (R i a,m) D" (4,n) = 0a(4,m)
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The prolate pentagons, Di, were treated in2 Part II and the oblate, D‘j, inl
Part L. Dn(io,n) is identical with the hexagen without cc::ruer,'3 Oa(4,n). In
the present work we report the combinatorial K formulas for Dk(la,n),
pl¢4,%) and D"(4,n).

The derived combinatorial K formulas for five seven—tier mirror-sym
metrical pentagons are collected in CHART L. In CHART II the X formulas for

the corresponding pentagons without apex (see the below figures) are given.

Dak(a,n) = MW(LZASLZ) Dai(fo,n) Dal(A,n)
Ny’
n
m i n
Da (4,n) Da~ (4,n) Da"(4,n) = Ob(4,n)

SOME AUXTLIARY BENZENOID CLASSES

Auxiliary benzenoid classes have proved to be very useful in enumera-
tions of Kekulé structures when it is aimed at producing combinatorial for—
mulas for benzenoid classes.

It may happen that the Kekulé@ structure counts (K) of two classes of

regular #-tier strips, say A(n) and B(n), are interconnected through a sum
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CHART I - Formulas for the number of Kekulé structures {k) for classes
of seven-tier pentagons

KO m} = sgss (1) () o) 2nndy (21 + B 2n + 5)20n + )

B (nd (4,m)}

m (n+1)(n+2)2(n*3)3(n+b)2(n+5) (Snl' + 600 + 2712

+ 546n + 420)

CK{Dk(4.n)} = 53%35 (n+l)(n+2)2(n+3)(n+4)(45n3 + 320n° + 671n + 420)

ki c4,m} = 57305 1*D) (192 2(1#3) L (n0) 2ne5) (5n* + 608 + 259m°
+ 4T4n + 315)
CK[Dm(la 1 2 3 2
M)} = 50800 D) (n+2) “(n143) “(n44) “(n45) (20 + 5) (9n + 14)

BRef. 2. bRef. 1. SpPresent work.

CHART II - Formulas for the number of Kekulé structures (k) for classes
of seven-tier pentagons without apex

B (Dal (4,m)} = soeg (D (2 (13 (21 + D (20 + 5) (n® + 16n + 21)
Pk (Dad (4,m)} = merhos (1+1) (e2) 2 (ne3) Hne) (65n° + 9750% + 6311n°

+ 224857 + 46364n2 + 52320m + 25200)
K(Da"(4,m)} = b (1+1) (n+2) (n+3) (45n” + 325 + 852n% + 983n + 420)
“k(Da' (4,1} = b (1+1) (m92) 2(ne3) Yneh) 21 + 5) (n® + 5m 4 T)
c.’C[Dam(lﬁ,n)} = ﬁ(ﬁ (n+l)(n+2)z(n+3)2(rz+4) (99nl' + 81.5713 + 2616;':2

+ 3820n + 2100)

®Ref. 2. A misprint is corrected: the power of (n+2).
hPresem; result, computed from K[DJ(h,n)} of Ref. 1.

“Present result.




mation formula as

n

KB} = :E: K(AG)) )

=0

Relations of this kind were already reported in the classical paper of
Gordon and Davison.6 More examples are found in the systematic treatment of
five-tier strips by Cyvin et al.4 In eqn. (7) the A(Z) benzenoids may be
interpreted as constituting an auxiliary benzenoid class when the Kekulé
structures of B(n), the main class, are toc be enumerated. On the other

hand, if a combinatorial X formula for B(n) is known, then
K{A(n)} = K{B(n)} - K{B(n-1)} (8)

More advanced definitions of auxiliary benzenocid classes and their appli-
cations are found elsewhere.g_ls
In the present work we will make use of two special classes of auxi-

liary benzenoids denoted L(n,2,l) and F(n, 3, -1):

1 L(n,2,1)
/*—\

W
n

i 6
The former class (L) has been studied before.1 One has

k{L(n,2,0)} = (”;3) - ("'g+2) (9)

The following K formula for the latter class (F) is new.

KiE(m, 3, -} = 3 (z+1)(";2)(”;3) -2 (";3)(Z§1) + (“;3)(231) (10)
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THE CLASSES D'(4,n) AND Dal(4,n)

The title classes are defined in the introduction. Dal(lo,n) is ob-
tained from Dl(fo,n) on removing the apex, i.e. the (protruding) angularly
annelated hexagon of the left rim. CHART I and CHART II include the final
results derived for the K numbers of benzenoids of these two classes.

The X numbers of the two classes in question are inter-related by a
summation formula of the type (7), viz.

n
kiolea,m) = Zx{nal(:.,«;)} (1)
=0

As a first task the K formula for Dal(k,n) was derived. This analysis

was based on the fundamental relation

n
kioa'(4,m} = Y K{F(, 3, -0)}12 a2)
=0

18 where the method

It was obtained by the known enumeration t:echrticp.xes.,1
of fragmentation due to Randiélg is applied repeatedly, and the fragments
are essentially disconnected benzenoids., On inserting from (10) into (12)

it is obtained

n n
2 2 o
kpal(a,m)} = % (nzz) (n;:s) @2 - % (n;ZXn;JXn;:i) Z (iﬂ)(mzl)
=0 =0
n n
2 ()Y S an(B) + o (73 ()
3L2 N\ 2 \3) \ 2
=0 =0
n ) M :
4 (13 n+3) (i+1)(i+1) (n+3) [7.'+1) an
2 3 )4 2 3 2 L3
= £=0

Here the six summations were all obtained by means of the following iden-

tities.
n K
k+i-1\m+i-1\ _ X k=g {n+j-1 n+m
YT ) - e Yoicns) S
=0 J=1
n 4 /
k+i-1\m+i-1Y _ _1yk=d (n+j-1Y n+m
P ) DN Vi ) 1
i=1 J=0
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The identity (l4) is obtained by equating two expressions for K{Ch(k,m,n)}
pertaining to c:hevrons,7 and (15) from X{Ch(k+l, m, n)} - K(Ch(k,m,n)}.7
The final results for the six summations are collected in CHART III.

For the sake of brevity we show the expansion of only one of the sums

of CHART III1, namely the third one. We have

> en(%) - () + 23« (%)
i=0 =2

where the last summation may be manipulated so that the identity (15) be-

comes applicable:

> (4)- ZM(J 2) < (P2) + 30 CEIYY) an
=2 J=1

According to (15) the last summation now becomes
(3+5- 1)(2+J 1) N (m-z) " (n+2) _ (m—l)(mz) " (m—z)(mz)
\ -1 ] 5 4 2 A3 3 A 2

- (n+1)(”z3) = (”;3) (18)

Inserting into (17) gives consequently

ii (i;1) " -(m-:)(”;z) £ B m(m:) (n;B) - (n+1)(n+2) _ (n;?l) 19)
i=2

Finally one obtains for the summation of the left-hand side of (16):

() () ene)-(5)

=0
and consequently the pertinent expression of CHART III.
The expanded summations of CHART III were inserted into (13}, and the
final result rendered into the form of CHART II.
The derivation of K{Dl(lo,n)} is now a matter of routine calculations,
al though somewhat laborious. The expression of K(Dal(la,n)} according to
CHART II was inserted into (11) with the result

kio*(4,m} = 30240[ Z @t 4 33 Z @+ 0 4+ 23 Z z+1)°

1=0 =0
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CHART III - Some expanded summations

n
Z e+ ? = (n+2)(”;2) = ("‘;3) - % (n+1) (142) (21 + 3)
=0

2
Z (ul)(“‘) (’"") - (mz)("d) (";“) = o ) (142) (3n + 5)

=0

Z (wl)(" ‘) g +z)(’“2) - (”“3) o GLIn0i1) (r92) (hn + 7)

i=0
n

; (i;l)z . (n;2Xn;2) _ (n+2)(n:3) . (n;l.)

= 2 n(nel) (n42) (3 + 6 + 1)

S350 - (- (2) - o) - ()

i=0
360 (n-l)n(n+1)(n+2)(5n +1ln + 3)
n
i 2
1+l n+3\n+3 n+2\f n+b n+2 n+4 n+s
b Mg '(JX&)'(z)(S)'(a) + () - (77)
=0

2520 (n=L)n(n+l) (n+2) (2n + 1)(5n + 57 - 9)

+ 1053 Z ('H-l) + 2976 Z (1.+1) + 5733 Z (7,+1) + 7621 Z (1,+1)

=0 1=0 =0
+ 6897 Z (u-l) + 4062 Z (1,+1) + 1404 Z (1,+1) + 216 Z (1+1)] (21)
i=0 =0 1=0

The expansions of these sums are polynomials in n. All of them needed here

have been reported by Chel:l.]'4
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THE CLASSES Dk(ﬁ,n) AND Dak(ls,n)

The combinatorial K formulas for the two title classes are found in
CHART I and CHART II. The derivation of these formulas is treated very
briefly in the following because the methods are basically the same as
those of the preceding section.

The K numbers of the two classes are inter-related by:

n
k0 @) = ) ke (4,0) 22
=0
The benzenoid Da*(4,n) is a multiple chain.® In terms of the Zd-

sequence it is denoted:
paca,m = %%?)

For this class one has the fundamental relation

n
K0 (em} = Y IK{Le, 2,017 @9
1=0
After inserting from (9) it was arrived at
n
K(Da® (4 }—Z w3 _ (342 | (24)
a (4,n)} = 3 5 )
=0
The summation of (24) was easily expanded after having derived the inter-

mediate result

n
% 2
(E+2Y" _ (n+3Yn+3 n+3 n+4) (n+s\ _ (n+6
2\3} LoAsg ) La ks )i . 7 25
=0
It was attained at the formula

2
k - n+3\" _ (n+3\n+d) _ [(n+3) n+d n+5) _ (n+b
sokms = () - () - () () (5)
(26)
which is equivalent to the pertinent expression of CHART II. Now the deri-

vation of K{Dk(h,n)} is again only a matter of tedious routine. The result

is entered in CHART I.
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THE CLASSES D"(4,7) AND Da"(4,n)

again inter-related by a summation formula of the type (5), viz.

n
K(D"(4,m)} = E Kk{pa"(4,7)} @n
=0
Furthermore, the method of auxiliary classes is again applicable to

Dam(lo,n); its K number obeys the fundamental relation

n
m 3 2
K{pa“(4,m)} = [k(B(n, 3, -0)}] (28)
=0
where the pertinent auxiliary benzenoid class is defined in the below

figure.

This class was also defined in a previous work,13 but the following expli-~

cit formula for the K numbers is new.

k{B(n, 3, -1)} = (n-1+1)(”;3) - (mz)(”’g*z) 29
We will not pursue this approach further in order to deduce the X
formulas for the two title classes. Instead we shall demonstrate an enti=-
rely new approach, based on the John-Sachs theorem.zo We apply it to the
Dm(lp.n) class at once without invoking Dam(li,n). Once the X formula for
Dm(fn,n) has been determined it is an easy task to find K[Dam(lo,n)} as a

difference in the style of eqn. (6), viz,

k{pa®,m} = k{0™4,m)} - k(d"(4, n-1)} (30)
Application of cthe John-Sachs Theorem. A new method of enumeration of
Kekul& structures was recently 1au‘n<:l‘ua:'l.21 It is based on the John-Sachs
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theorem,zo by which the K number is identified with a determinant of a cer-
tain matrix W. Gutman and Cyvin21 interpreted the matrix elements, Hij' by
K numbers pertaining to subgraphs of the original benzenoid. Usually they
are benzenoids themselves, but may degenerate to systems with acyclic
chains of edges or the empty graph. In the present application to Dm(t’o,n)
all subgraphs are either (a) parallelograms, occasionally degenerated to
single linear chains of hexagons (acenes), (b) acyclic chain with K=1, or
(c) the empty graph. The K formulas for the benzenoids under (a) are well
known .

Let the pentagon Dm(lo,ri) be oriented so that it has four peaks and
four valleys. Then it gives rise to a 4x4 determinant. CHART IV provides an
illustration for n=2 as an example. The pertinent subgraphs are indicated
as black silhouettes and heavy lines on the background of the original
pentagon. The K numbers of the subgraphs are the W matrix elements "ij
(Z,d =1, 2, 3, 4). In the case of n=2 (CHART IV) the method yields

15 10 5 0

6 10 10 0
k(0™4,2)} = = 720 (31)

(n:k) (n?) (n+3) 0

k{p™(4,m)} = (nga) (";3) ("23) 0 (32)
e e )
() () () o

The determinant (32) was expanded into:

et = [oon(r3) - (53] [C5002) - (2059
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CHART 1V - Subgraphs (black) in the application of John-Sachs
theorem to the pentagon p™(4,2). W ;are K numbers

Wiy ® (2) s = (3) Wyg =3 Wi = 9

=
(

=
I
o
o W
S’
I
=)

23 ”24 -

&

)
5
_(6 _ 5 (5 _
Hai = 6) Wy = (a) Higy = (3) Wy =1
6
7

&

- _ 5 _ 5 _
Hpp, = ( Wyg = (s) Wi = (4) W = 2

[ol2) - (2] [02X) - ()
+ [(n+1)(":') - (”;4)] [("23)2 - (n+3)(";3)] pag)

No attempts were made to simplify this expression further, but all the bino-
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mial coefficients are retained in their original form as they appear in the
determinant (32). However, (33) was transferred to the polynomial form with
the result given in CHART I.

In conclusion it is stated that the approach invoking John-Sachs
theorem turned out to be less laboriocus than the application of auxiliary
benzenoid classes and subsequent summation. It is a convincing demonstra-

21

tion of the virtue of the new enumeration method, of which the possible

applications certainly are far from exhausted.

Eioel Bxeeple: Repefted Applicerion of thy Method of Trsgmentation. The
method of f]:agmenl:at’.i.on!-9 should not be discarded in spite of the conclu-
sion of the preceding paragraph. It is a very useful method and leads often
to interesting connections between X numbers of different benzenoids or
benzenoid classes. Here we show an example in connection with the consi-
dered pentagon Dmtlo,n) . The scheme of fragmentation which is illustrated
in CHART V yields the result:

kD™, )} = k(D (4,m)} + K{D®(4, n-1)}
+ 21({02(3, 4, n-1)} + k{0(3, 3, n-1)} (34)
On combining with eqn. (30) it is obtained
k(pa®(4,m} = (D' (4,m} + WD, (3, 4, n-1)} + K(0(3, 3, n-D)} (39

On the right-hand side of (35) the X formula for pt (4,n), the seven-tier
prolate pentagon is known,'z see CHART I. In the next term of (35) D, sym-
bolizes a six-tier pentagon. Combinatorial X formulas for regular six-tier

13,22

strips have been derived from time to time, but not exactly for the

class D2. We give it here as an original result:

KD, (3, &, n=1)} = 7ok n (1) 2042) > (143 (vt) (36)

Finally we have the K number for the class of dihedral five-tier hexagons

as the last term in (35). The appropriate formula readsﬁ

(03, 3, n-1)} = ghen (D) 2e) 20133 2 () (37

In consequence, the formula for K(Dam(é,rl)} is easily obtained from eqn.
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0™ (4,n)

D (3 4,n-1)

0(3,3,n-1)

Di(h,n)

] (3 ,h-1)

p" (4,n-1)

CHART V - The method of
fragmentation applied several

times to the pentagon D™(4,n)
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(35) on inserting the expressions from (36), (37) and the the first formula
of CHART I. The result coincides with the last formula of CHART II.

NUMERICAL VALUES

Table 1 shows the numerical K values for the three classes of penta—
gons and three classes of pentagons without apices treated in the present

work, Values for n up to 10 are listed.

Table 1. Numerical values of X numbers for the six specified benzenoid
classes.

n  Dat(hm)  DY(h,n)  Dat(4,m) pla,m  pahm)  D%(4.n)
1 25 26 52 53 45 46
2 217 243 900 953 674 720
3 1117 1360 8525 9478 5594 6314
4 4192 5552 54782 64260 31906 38220
5 12718 18270 268128 332388 140196 178416
6 33102 51372 1072224 1404612 508248 686664
7 76734 128106 3667950 5072562 1589346 2276010
8 162459 290565 11080575 16153137 4420251 6696261
9 319759 610324 30245644 46398781 11176165 17872426
10 592735 1203059 75884380 122283161 26111514 43983940
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