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Abgtract - Numbers of Kekuléd structures (K) for oblate rectangles
and related benzenoid classes are studied. The determinant formulas,
based on John-Sachs theorem and presented in PART V, are expanded in
terms of summations, which are convenient for practical applications.
The virtue of the present methods is demonstrated by deriving the
combinatorial ¥ formula for the 15-tier oblate rectangie. It is a
polynomial of 22-th degree.

Introduction. This is a continuation of the studies of the number of Kekul&
structures (K) of oblate rectangles, RJ(m,n), and related benzenoids. We ad-
here to the definitions and the notation introduced in the previous parts of
this article series.l

During these studies many challenging problems have been encountered,
and different methods have been devised in order to solve them.

Gul:man2 attacked the problem of deriving K{Rj(m,n)} for some fixed
values of n. He solved this task for n=1 and n=2 by introducing auxiliary
benzenoid classes and treating systems of linearly coupled recurrence rela-
tions. These methods have been systematized and applied to oblate rectangles
with n = 3, 4, 5 and related benzenoid classes in PART IA, PART III and
elsewhere.:}_5

Another line of these studies concerns K{Rj(m,n)} with fixed values of
m. For m=2 and m=3 the combinatorial formulas were derived already in the
classical work of Gordon and Davison,6 and also later by different
7-10

me thods . In order to solve the problem for m=4 a refined application of

auxiliary benzenoid classes was devised in PART IA; in this work the method
of fragmentation due to RemdiE11 was employed and supported by analytical
computations. The fully computerized method, which actually is a numerical

polynomial fitting procedure, was first applied to oblate rectangles: in
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PART IA for m=4, in PART IIA for m=5, and in PART IB for m=6. The problem
was solved for m=7 in PART IIB by means of a summation method.

In PART V the oblate rectangles and some auxiliary benzenoid classes
are treated by a new method12 invoking the John-Sachs theorem.13 Combinato=
rial K formulas are obtained in terms of determinants, whose elements are
binomial coefficients.

In the present work we pursue the developments of PART V. General
formulations for the expanded determinangs are given. The method is used to
derive the combinatorial formula for K{RI(8,n)}, which is a polynomial of
22-th degree in n.

usslon In PART V a determinant for R )(m) =

K{B(n, 2m~2, 1)} is expanded for 0 < 1 < n and m=2, 3, 4; cf. eqns. (9),

Results _and

E=x=z==

(10) and (11) therein. The equations display a characteristic pattern, which

obviously may be generalized for all m > 2:

-1

m-2
Hn(z)(m) = (-1)m"1(n+2)m_ (1 m+1) Z{: -n* (n+2) H (0)(m (1+1+2) (1)

=0

The formula is applicable to the degenerate case of m=1 if the summation is
omitted in that case. Then the first (external) term gives correctly
B D) =14 et. pare 11D
A similar formula holds for B = Z)(m) = K{B(n, 2m-2, -1)}; 0 < 1 < n.
A generalization of eqns. (20), (21), (22) in PART V yields

m-2
Rﬁ(-z)(m) " (_l)m-l(n+2)m-l(l+m-l) . Z (‘1)1(”*2)1"%(0) (m_i)(z»;;l) 2

L-m+1
=0
Again the formula is applicable to m=1 if the summation is omitted in that
case. Then the first term gives correctly Rn(_z)(l) =1 (cf. PART III).

In eqns. (1) and (2), if m is large enough (m > 1+2), there will be at
least one vanishing binomial coefficient in the summations. More precisely,
the terms for © > I all vanish. The external term vanishes for m > Z+1.
Because of this feature the practical applications of these equations may
be simplified. .

Here we are especially interested in Rn(m) = Rn(n)(m) = K{Rj(m,n)}.

On inserting Z=n, eqn. (1) gives
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_ m-1 m-1{ n+m i Z_ (0) [n+i+2
Ry = (D™ B Y Y 0P ', Qen(TE) @
=0
(m)
(m)

The usefulness of eqn. (3) depends on the accessibility of RK(O)
)

for different values of m. The expansion of the determinant for Rn

when 7=0 gives (cf. PART V) for m > 3:

&, - (—I)m(n+2)m_2(nf;T2) & :E: (~1)i(n+2)iﬁ%‘°)(m—i-l)(";f;3) )
=0
Also egns. (3) and (4) are convenient in practical applications be-
cause of the possible occurence of vanishing binomial coefficients. If m
is large enough, all terms for Z > n in the summation vanish. The external
term vanishes when m > n+l in (3) and m > n+2 in (4).

(0)

Eqn. (4) is a recurrence relation for Rn (m), which gives the for-
mulas for different m values successively in the following way. First we

have as an initial condition (m=2):

( ) [n+2 [n+2

@ - e 1-{") 5

The result is consistent with the external term of eqn. (4) when the summa-

tion is omitted. It follows

(0)(3) =R (G)(Z)(ma) (n+2)(7¢+3) . L(n;:!) _ (n+2)(”*3) -

The next step yields for # = Rn(o) (4):

/n+3Y [ml.) (m!u)
" =D - (n+2)L + (n+2 7
V3 ) - DR ) (N
We give one more step in order that the pattern should be clear. For G =

R
g = H(ng) e <n+z)u(” “) " (n+2)21:( ) (n+3) (’“5) (8)

This method of successive derivation was used to develop the formulas

for R ©
n

which are collected in CHART I. The chart is supplemented with the trivial

(m) up to m=8, The results were transferred to polynomials of n,

case of m=1.
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CHART 1. Members of B(n, 2n-2, 0) with
fixed values of m

B(n, 2m-2, 0)

¥ 2m-2

Rn(o)(l) = K{B(n,0,0)}
0)

1

(2) = K{B(n,2,0)}

%(nﬂ) (n+2)

£, @ (3) = k(B(n,4,0)) = —1-(n+1)(n+2)3(n+3)

© (4) = K(B(n,6,0)) = 2m(mﬂ) (n+2) (n+3)(n +4n + 5)

Rn(o)(S) = K{B(n,8,0)} = zﬁiiﬁ(n+l)(n+2) Sne3) (17n* & 1360 + 439n% + 688n + 420)

5 4

ﬁ"(o)(é) = K{B(n,10,0)} = (n+1)(n+2) (n+3)(31n + 37207 + 19420 4+ s616n°

725760
+ 9511"2 + 8988n + 3780)

(M = KB,12,00) = Taegrmgt) (w2) (ne3) (691n° + 1105617 + 79788:°

+ 338320 + 9217590 + 16542640 + 19155620 + 1315560 + 415800)

(8) = K(B(n,14,0)) = 5(1#1) (142) 2(n+3) (54610 + 1092201°

1
1245404160
+ 10064077° + 561739227 + 21022809n° + 55133100%° + 102705053

+ 13&421928n3 + 1156]2870n2 + 64047960n + 16216200)

Now eqn. (3) is practically applicable. For m = 2, 3, 4, 5 it gives
the following expressions, where the symbols L, D, # and G are applied in

consistence with eqns. (5)-(8).

Ry = ("3} - en(32) )
B (3 = D(n22) - (n+2)l}(n23> + (142) ( 3) (10)
2 (n+d

6 (11)

i
/
R (5) = a{”zz) - (n+2)ﬂ( ) + (n+2)zn(”g4) - cn+2)3n(”gi) + (n2) (” 5)

(12)

3 n+4\
/

_ /n 2\_ 02l -
Rn(ll) = 2 ) (n+2)[){ }+ (n+2) L\ (n+2) 7
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It is believed that the procedure indicated by eqns. (9)-(12) repre-
sents the so far easiest way which has been detected, to obtain combinato-
rial formulas for Rn(m) = K{Rj (m,n)} with fixed values of m. Other methods
have been used to derive Rn(m) for m up to 7 (see above).

Ve polnt out that a misprint is present in the polynomial PG(M) =
¥{R1(6,7)} in PART IB: the constant before n should read 338320 (not 33820).
In CHART II we show the result obtained for Fn(B) in the present work.

CHART II. The 15-tier oblate rectangle

1
10461394944000

+ 223096561 " + 2501584850

(n+1) (n+2) % (n+3) (929569712
10

aRn(B) = k{rd(8,m) =

+ 173108682()719 + 8229767127%8

+ 28315930608%7 + 723225(}0575?’16

+ 138258580980n° + 1965594456047

+ 203012336736n° + 144957849840n°

+ 645004080001 + 13621608000)

®The numerical factor in front of

the polynomial is STLAT

The formula of CHART II is of course quite impractical for hand calcu-
lations because of the large integers involved. However, the fact that it
could be derived demonstrates the virtue of the present method.

Because of the untractable integers of the formula in CHART II we also
give the last intermediate step in the derivation, where the numbers of

digits of the integers do not exceed ten.
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xri(8,m} = §T%§T{n+l)(n+2)8(n+3)[1939n12 + 535800 " + 691553110

9

+ 5453576n° + 2913171970 + 110866764n’ + 3081645477° + 630633504n°

9436&0482n4 + 1007609536713 b 729178560n2 + 321056640n + 64864800

7o

12 0

. E%6{522379;1 + 11057856n"1 + 10493235571 + 5858358601°

8 6 5

+ 2112106137n" + 5033910168717 + 76079457057 + 5825545140n

3

1605055616n& - 8585665824n" - 8169647760n2 - 2921486400n) ] (13)
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