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The number of Kekulé structures (K) for benzenoid classes of oblate
rectangles, Rj(m,n), with fixed values of n, are studied. A systematic
method is developed for determining (a) K numbers of the auxiliary classes
B(n, 2m2, ) expressed linearly by K{Rj(m—j, n)) = Rn(m-,;i), and (b) the
recurrence relation for Rn(m-,j). The example with n=5 is treated in detail

for the first time. The recurrence relation reads:
Rs(m) = AZRS(m—l) - ZQSRS(m-z) + 343}?5(111-3); m> 3.

Some results for six additional classes related to RJ(m,5) are summarized.

1. INTRODUCTION

The importance of rectangle-shaped benzenoids (or simply rectangles)
was recognized from the beginning of the systematic enumerations of Kekulé
structures. b

Rectangles with indentation inwards, viz. lli (m,n), are (2m-1)-tier
strips referred to as prolate macv:angles.2 They would in modern terms be
called essentially disconnec:ed,a'h consisting of m linear chains (poly-
acenes) joined by fixed single bonds. Hence their number of Kekulé struc-
tures is given by K = (n+1)m. The case of m=2 was solved by Gordon and
Da\.viscm1 and also considered later.5 The general formula was first given

6 7 : 3
by Yen, and re-derived in different ways by others.”a
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Rectangles with indentation outwards, viz. RJ(m,n), are also (2m-1)-
tier strips; they are referred to as oblate rectangles.2 The problems of
enumerating Kekulé structures for these benzenoid systems are considerably

more difficult than for the prolate rectangles. The problem was solved for

the J-tier strip (m=2) by the early il.':vesI:i.gz:n'.m:s,l’6 and also considered

later.5 Also the formula for the number of Kekulé structures (X) has been

Le34ba 8 The cases of2 m=4 andg m=5

were solved much later, and quite recently forlo m=6 and11 m=7.

derived for RJ(B,n), the 5-tier strip.

So far the studies of oblate rectangles with fixed values of m have
been reviewed. Gutman12 attacked the problem of K number enumeration for
oblate rectangles with fixed values of n. He solved this problem for n=1
and n=2 by introducing classes of auxiliary benzenoids and treating sys-
tems of coupled recurrence relations. This work stimulated the present
authors, who independently solved the enumeration problem for n=3.2’13 The
studies have been extended to related systems derived from the n=2 and
»n=3 oblate rectangles.la Very recently the Kekulé& structures of the n=4
oblate rectangles, Rj(m,&), and related classes were enumerated by Su.

In the present work we indicate a general method of XK enumeration
for oblate rectangles with fixed values of n and report a contribution to

the case of n=5.

2. AUXILIARY BENZENOID CLASSES

Recall the definition of the auxiliary classes B(n, 2m-2, t), which
may be interpreted as RI (m,n) rectangles modified at one end; cf. Fig. 1.
Notice that I=m gives the rectangle itself; B(n, 2m-2, n) = RJ(m,n).

Let us introduce the abbreviated notation for X numbers as
KB, -2, 1)) = B D m) W

for all values of t (positive, zero and negative). Especially for the oblate

rectangles themselves:
kiR m,m} = R W m = & ) @

A basic formula readsz’lo

n
R = 9D my ©
i=0
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B(n, 2m-2, 1)

B(n, 2m-2, 0) B{n, 2m-2, -1)

Fig., 1. Definition of the auxiliary classes B(n, 2m-2, ¢).

A more general form is obtained by the known Eethod52’10 as

n
R, (m+j) = Z Rn('?')(jn) Rn("’)(m) 4)
1=0

Eqn. (3) is actually the special case of (4) for j=0 when we define for
all n:

R"(_u(l) “13 1350 (s)

3. A SET OF LINEAR EQUATIONS

3.1. General formulation

Let eqn. (4) be applied for § =0, 1, 2, ...., n. Then the obtained
set of linear equations may be written
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= - - -
R, (m) 2 O )
Rn(m+1) Rn(_l)(m)
Rumd) | Ly | A ®)
I_'."?n(n'm':) Rn(-”‘J (m)

where M is the square (n+l)x(n+l) matrix with the general element equal to

M, =& @) &)

rs

This set of equations makes it feasible to express all the Rn("l)(m) quan-
tities in terms of Rn(m+j).

The number of equations is drastically reduced by virtue of the sym—
metry properties of the auxiliary benzenoids: B(n, 2m-2, -1) =

B(n, 2m-2, l-n). Hence
=5 -
g0 g SO 1>0 (8

The cases with even and odd n behave slightly differently. We will therefore

exemplify both of these cases.

3.2. The case of n=4

Here we are faced with the three unknowns Ra(O), Ré(—l) and Rﬁ(lz),

while 34(_3) = R[‘(_l) and R[.(_l') = RA(D) . The set of linear equations (6)

then reduces to three, viz.

(0) fei -2

R, (m) 22, %% am Vi Rb( Yy Rb(‘” )
0 g L 2

g | = | 21, P T A M R ) 2,V m (%)
0 X ¥ s

R, (m+2) 2% =Pe 2 Po || Pm

or with numerical values inserted:



R, (m)
Rk(m—l) -

Rl‘(m¢2)

= ‘5 =

2 2 | & %m
30 48 27 RA("”(m)
630 1080 621 | |, Dm

(10)

We will not pursue this example further since the problem with »=4 already

is solved.

3.3. The case of n=5

The following treatment of the case with 7n=5 is an original contri-

bution and shows simultaneously the virtue of the present methods, There

are again three unknowns, viz,

{=2) (-4) (-1) (-5) _
f?s 5 .‘?5 = RS , and RS = R5

(6) may be written:

) (-1) (-2)
Rg(m) R(D Ry (1) Rg )
1 . () -1) (-2)
3 | 25tm+) RS RSTU@ B (@
0) (-1 (-2) (-2)
Rg(m+2) BSE BT T 2" m
or
)
. Rg(m) 1 1 1] | R @
& - (-1)
3 R5(m+1) 21 35 42 55 (m)
Ry (m+2) 686 1225 1519 RS(_Z)(m)
The equations yield:
1 3 5
RS(O) () = 35 Aq (mv2) - 3 Rs(m+1) + 3R (m)
-1) 3 17 il
Rs( (m) = - 55 Rg(m+2) + 7 Rgmel) = 3 R(m)
] 1 11 5
RSP ) = g5 RyOm2) = 7 Rg(ml) + 5 Ry(m)

Rsm), Rs(_l) and RS(_z)

0)

, while R

(0)

Ry (m)
(-1

Ry (m)

. The set of linear equations

(11)

(12)

13

(14)

(15)
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4. CONNECTION BETWEEN En AND Rn(O)

A relation for Rn(o) similar to eqn. (3) reads:
n
£ P my = >, @+na, T 1) (16)
=0

It is derived by the known method of f):agnentat:iun.2 Figure 2 shows an
exemplification for Ra(o)('}a) . We can add the terms for which Rn(-")

by virtue of the symmetry property (8). Again we distinguish between the

colincide

cases of even and odd n. The legend of Fig. 2 exemplifies a case with an
even n, viz. n=4. The depicted example gives 3}?4(2) = Ra(o)(B), and more
generally

3, (1) = &, @) an

The situation is similar for odd n. As an example one obtains for n=5:
Rs(u)(m) = e)r, O 1) + @5)r, P gy - r ey s

while

1) = ), _ 1), _ -2), _
R (m-1) = 2Rg " (m 1) + 28, (m-1) + 27 (m-1) (19)

Consequently

TR (n-1) = 22,47 (m) 20)
The pattern of eqns. (17) and (20) is quite general:

Rﬂ(m—l) = LR S

n+2 n m n

5. NOMINAL VALUES OF &' *
Nominal values of Rn(-l) (m) should fit the systems of equations, but
are extrapolated to m values for which no benzenoid system can be visualized.
For m=1 we refer to eqn. (5). It can still be interpreted as pertai-
ning to the "trivial cases of no hexagons" or a single acyclic chain
(polyene) with one Kekulé(szt’;:ucture.

We wish also the Rn values for m=0, without worrying about a pos-
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(0)

=315

S (-1) _
@ A.RA (2) B

5.34(0’(2) =75

Fig. 2. Exemplification of eqn. (16) for n=4, m=3;

(0) (-1 (-2) 7 (=4)
4

© o (=3
Ii’4 3) = 1.-5?',I (2) + 2-R (2) + 3°R4 (2) +4 Rt. (2) + 5-5‘[‘ (2)

(-2)

= as)r, P @ « @aror @« 3w P,

Notice also:

A,(2) = 2}?4(0)(2) + 2}?5('”(2] + Ra(_z)(Z) in accord with eqn. (3).
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sible interpretation in terms of degenerate benzenoid systems., Eqn. (4)

with J = -1 gives
n
gD = Y BP0z P m 22)
=0

Since this is an identity, valid for all m values, it is clear frem eqn.

(21) that all terms must vanish except the first and the last one with
(o] -n

Hn( )(O) = Rn( )(0)‘ One obtains

(0) _ 1
Rn ) = Py (23)
Rn(_l)(O) = 0; n>1g (24)

6., RECURRENCE RELATION

6.1, General

It is of interest to deduce the recurrence relation for Rn’ i.e, the
linear dependence between the quantities Rﬂ(m+j) . The set of linear equa-

tions (Section 3) is independent when the #m+l equations (6) are reduced by

virtue of the symmetry properties. Their number then becomes [E-—}, i.e. 1

for n=1, 2 for n = 2 and 3, 3 for n=4 and 5, 4 forn = 6 and 7, etc, The
dependence between the Rn quantities is introduced by adding one equation

more to the set. Consequently we can predict at once the number of terms

§ 4 5 & 5
in the recurrence relation. It is {n_iu_], i.e. 2 for n=1, 3 for n = 2 and

2
3, 4 forn =4 and 5, 5 for » = 6 and 7, etc.

An obvious way to derive the recurrence relation would be to add an
equation by increasing j in Rn(m+j) with one unit. The computation becomes
substantially easier, however, when the matrix M is augmented by a row on
tep of it, i.e. assuming j = -1. Here we take advantage of the nominal

values introduced in the preceding section.

6.2. The case of n=4

The case of n=4 has basically been solved before; see Paragraph 3.2.

A part of the solution is the recurrence relation2’15
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RA(MQ) = 27R4(m+1) G lOBR[‘(m) + 108R, (m-1) (25)
6.3. The case of n=5

Egn. (12) when augmented in the way it was described in Paragraph 6.1
assumes the form

1
R (m=1) = 0
5 7 RS(O) (m)
R (m) 1 1 1 5
1 - 7D m) (26)
& (me1) 21 35 42 =
5 R ( 2)(m')
Rs(m-t-Z) 686 1225 1519 %
The first row yields
1 N J
B m) = 5 RS(m 1) 27

in consistence with eqns. (20) and (21). On equating (13) and (27) the de-

sired recurrence relation is readily obtained as:

Rs(m+2) = &ZRS(m-l-l) = 245}?5(m) + 343)?5(17:—1) (28)

By virtue of the linear dependencies of the quantities R this rela-
tion applies to all of the quantities Rs(t) (m .

7. INCORPORATION OF THE QUANTITIES R(Z)
In general:
Rn(n-k)(m) - Rn(n-k—l)(m) + Rn(_k)(m)i k=0,1,2, ...., n-l @9

In supplement of eqn. (5) for m=1, and (23), (24) for m=0, we have:

R P -1 150 (30)
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Rn()(0)=n—5; 0<l<n (31
R (0) = == (1=n)
n n+2 (32)

It is again expedient to employ the symmetry properties (8) in prac-

tical applications of (29). In the case of n=5 we have:

rgm = 2 m + 5O (33
R W =2 P o« (3)
2P m - P m + RS(_Z)(m) (35)
2P m =M m + B ) (36)
2P = 2, P m + 2P om (3n

8. FINAL RELATIONS FOR n=5

8.1. Eaxplicit forrula for Rs(m)

The recurrence relation (28) gives the solution of Rs(m) in a closed

14,15

form by standard mathematical methods, which imply the solution of the

cubic equation
3 2
a” - 42a° + 2450 - 343 =0 (38)

In this case the expressions are somewhat awkward since (38) has no integer

solution. One has

_7

@ =% (a +b+ 12) (39)
a, = 4 (aw + B 4 12) (40)
2 6

ay = %- (aa..’2 + bu + 12) (41)

where

3 3
a= v 756 + 8423 , b = V 756 - 840 Y3 (41)
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and
w =L 1 eay3) w =Ll (1 -2y (43)
2 ’ 2

Here 7 = V—l , and w3 = 1. Next we employ the solution of the following

set of linear equations,

Py ¥ By ¥ Dy 55(2) = 196 (44)
alpl + cxzpz + a3p3 = RS(B) = 6860 (45)
o, + o, v o lp. = BL(4) = 242158 (46)
1P1 T %Pyt P3 = dg
viz.
1
p, = 30588 - 2183a” + 21iY3b2 - 1910 YT + 1914by3] 47

L . . .
P, = 15l1176-21(3-i Y Da -21(3+¢ YHBL4191 (34 VI ar191(-iYDb]  (48)

= %s[mmzum VIa 21 (1Y DHB2-191(3-1¥Da-191 (34 YTHb]  (49)

i~
w
i

Then the explicit formula for Rs(m) reads

_ m-2 m-2 2
Bglm) = pyry ~ P50

+p 3(13m_ (50)

(®)

8.2. Relations for Rs (m)

By means of the relation (28) the equations (13)-(15) were rendered
)

into the form which is presented in CHART 1. Also the quantities 35 for
1 > 0 were coupled to the system of linear equations through (33)-(37).

In view of the preceding paragraph all the quantities Rs(t)(m) are
now in principle known as explicit formulas of m, although the expressions

are rather awkward.
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CHART 1 - Rs(t) expressed by linear combinations of Rs(m—j)

@n = ek =
Ry (m) = Bo(m) = 5 Rg(m=1)

49

3 21 e 43 o
Rs( ) my = Ro(m) = 5= Rg(m-1) + =5 Ry (m-2)

2 (2)

1
5 (m) = ERS(m)

(1 221 1y - 39 i
Rg™ " (m) = 5 Rg(m-1) 3 Ry (m-2)

R 0) (m)

7 g
2 5 Rg(m-1)

L]

e 49
Rs( Dm =7 Ry(m-1) = 3 Ry(m-2)

o 1 21 - 49 ad
RS( )(m) =535(m) _TRS(M Ly %= Rs(m 2}

9. ADDITIONAL BENZENOID CLASSES

An infinite number of benzenoid classes 1is compatible with the recur-
rence relation (28); those pertaining to Rs(t) are just a few examples.
Below we give six selected additional classes which follow (28) and are
modifications of the oblate rectangle Rj(m,S) at one end. The depicted

figures have m=2.

(-1)
5

A=77 A(m) = R m) + RS('Z)(m)

Ll

1 7 i
E Rs(ﬂl) 3 Rs(m 1)
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B{(m)

C (m)

D(m)

E{m)

F{m)

[0

2}?5(_2) (m)

RS(m) e 21R5(m-1} + 491?5(17:—2)

B(m) + Rs(ﬁl)(m)

49
Rs(m) - laRS(m—l) t o Hs(m-l)

ot + B o)

Rg (m - 7}?5 (m=1)

g + 7, ()

7
ZRS(W) =5 Rs(m—l)

(4)

E(m) + HS (m) + D(m)

= ARS(m) - llaRS(m—l)
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10. UNSOLVED PROBLEMS

10.1. Notation

Write the recurrence relation

jl
B (n+1) = Z o R (mj) 1)
3=
where
j' = [%] (52)

Here the form (51) was chosen so that the j values also indicate the

different quantities (reduced by virtue of symmetry) Rn(_l) for L > 0. They

are in other words R (0), R (-l), Fid (._2)’ sy, AT, (-j|).
n n n n
10.2. Conjecture A
e Y
co Rn 2) (53)

(-3") _ (=% =
We know that Rn (1) =1 and Rn (0) = 0; cf. eqns. (5) and
(24), respectively.

10.3. Conjecture B

e.>0 ; J 80 Py By somen (56
J
0 <0 ; LRy T I, (55)
10.4, Conjecture €
(56)
Oj'=cg'-l' n=2,4,6,
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11. NUMERICAL VALUES

@) (m) =

¥{B(n, 2m-2, 1)} with n=1, 2, 3, 4, 5, 6. Apart from the information in

The following tables show numerical values for &

themselves these values are supposed to be useful in the further studies of

Kekulé structures for oblate rectangles, which are in progress.

k{81, 2m-2, 1)) k{B(2, 2m-2, 1)}

] o

1= = - - 2 .-
m 1= =, 1=2 =1 1={_, L==1
0 2/3 1/3 1/2 1/4 1/4 0
1 2 1 3 2 1 1
2 6 3 20 14 6 8
3 18 9 136 96 40 56
4 S4 27 928 656 272 384
5 162 81 6336 4480 1856 2624
6 486 243 43264 30592 12672 17920
7 1458 729 295424 208896 86528 122368
8 4374 2187 2017280 1426432 590848 835584
9 13122 6561 13774848 9740288 4034560 5705728
10 39366 19683 94060544 66510848 27549696 38961152
11 118098 59049 642285568 454164480 188121088 266043392
12 354294 177147 4385800192 3101229056 1284571136 1816657920
13 1062882 531441 8771600384
K{B(3, -2, 1)}
0 -1
m Ia3 1=2 I=l l-[_3 l-(_z
0 2/5 1/5 1/5 /5 0
1 4 3 2 1 1
2 50 40 25 10 15
3 650 525 325 125 200
4 8500 6875 4250 1625 2625
5 111250 90000 55625 21250 34375
3 1456250 1178125 728125 278125 450000
? 19062500 15421875 9531250 3640625 5890625
8 249531250 201875000 124765625 47656250 77109375
9 3266406250 2642578125 1633203125 623828125 1009375000
10 8166015625
K{B(4, 2m-2, 1)}
0 -1
m 1=4 L=3 1=2 I=1 i={_, t={_y l=-2
0 1/3 1/6 1/6 1/6 1/6 0 0
1 5 4 3 2 1 1 1
2 105 90 66 19 15 24 27
3 2331 2016 1476 855 315 540 621
4 52137 45144 33048 19089 6993 12096 13959
5 1167291 1010880 740016 427275 156411 270864 312741
6 26137809 22635936 16570656 9567153 3501873 6065280 7003503
7 585284211 506870784 371055168 214229043 78413427 135815616 156826125
8 4797077337 1755852633 3041224704 3511703079
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