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FIBONACCI GRAPHS
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Some general properties of Fibonacci graphs are estab-

lished. In addition te this a precise definition of Fi-
bonacci graphs is given for the first time. It is pre-

viously known that the nonadjacent numbers of Fibonacci
graphs can be calculated via a Fibonacci-type recurren-
ce relation. We show here that the same is true for the
independence numbers. These results provide very effi-

cient metheds for the calculation of a number of graph

polynomials (characteristic, Z-counting, matching = a-

cyclic = reference, independence = color and p-polyno-

mial) of Fibonacci graphs.

The theory of graph polynomials and their chemical applica-
tions has nowadays a long bibliography (for review and further re-

1d3)‘ One of the basic problems in this field is the

ferences see
calculation of the respective polynomial for a given molecular
graph. The recent developement in this area goes mainly in two di-
rections. Firstly, general computer procedures are designed and
implemented, enabling an efficient calculation of various graph

polynomials of arbitrary molecular graphs (see, for instance,

refs. 4-6). Secondly, for particular classes of molecular graphs



special calculation schemes are developed, which are based on the
specific structural features characterizing the members of this

class (for recent work along these lines see-"'_16

).

Within the efforts of this second kind, the concept of Fi-
bonacci graphs was put forward by one of the present authors15'16.
For Fibonacci graphs various graph polynomials (characteristic,
matching = acyclic = reference, Z-counting, independence = color,
sextet and p-polynomial) can be computed by using Fibonacci-type
recurrence relations. In the present paper we shall elaborate so-
me mathematical aspects of the Fibonacci graphs and the polynomi-
als associated with them.

Fibonacci numbers occur in problems of Kekulé structure enu-
meration. The first papers where this has been observed seem to
be17’1B; 19—21.

for more recent work on this matter see Another re-

cent application of Fibonacci numbers is in the theory of Herndon

resonance energyzz.

HOSOya23—25 was the first to introduce a graph-theoretical
interpretation of the Fibonacci sequence. He namely demonstrated
that the nonadjacent numbers of the path provide a representation
of the Fibonacci numbers (and also that Lucas numbers are repre-
sented by the nonadjacent numbers of the cyclezs). Although not
explicitly stated, families of graphs implying Fibonacci-type re-

currences have been considered by one of the present authorsze_zs.

CONSTRUCTION OF FIBONACCI GRAPHS

The description of Fibonacci graphs given in ref. 16 is not

completely satisfactory. Therefore we provide now a more precise



definition. Let G_1,GO,G1,G2,... be an infinite sequence of graphs,
constructed in the following manner.
G1 is an arbitrary graph, possessing at least one edge. Its

two adjacent vertices are labeled by Vo and vy For all i = 1, the

graph G,

1+1 is obtained from Gi by inserting a vertex vy on the

+1

edge connecting L and V- The graph GO is obtained from G1 by

1

identifying the vertices v, and v,. The graph G_; is obtained from

(0] 1
G1 by deleting the vertices Vs and vy
DEFINITION. The (finite or infinite) set (Gr'Gr+1""’Gr+s}' r &0,

s > r+1, is called a set of Fibonacci graphs. Further, if either
VO or v, is of degree one, then also (G_1,GO,...,Gr}, r > 0 is a
set of Fibonacci graphs.
A set of Fibonacci graphs must possess at least three elements.

The above construction is illustrated on the example of the

molecular graph of fulvene. It is easy to see that in the general
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case the construction leads to two possible modes of graph-growth:

an internal subdivision (a) and an external subdivision (b):




SOME PROPERTIES OF THE FIBONACCI GRAPHS

The following result has been discovered independently in
refs. 15 and 28. We present it because of completeness. Ref. 15
contains detailed illustrations and applications of Theorem 1.

THECREM 1. If Gr' G and Gr are Fibonacci graphs, then for

rHd +2

all k,

m(G k+1) = m{G k+1) + m{G_, k) (1)

r+2' r+1’

where m(G, k) denotes the k-th nonadjacent number23’24

of the
graph G. Recall that m(G, k) is equal to the number of k-matchings
of the graph G.

Let o(G, k) denote the k-th independence number of the graph
G, i.e. the number of ways in which k mutually nonadjacent vertices
can be selected from G. These numbers have a certain importance in

6,29-31

theoretical chemistry in particular, if G is a Clar graphBO

then o(G, k) coincides with the k-th resonant sextet number of the

corresponding benzenoid hydrocarbon16'3o’31.

Recently Balasubrama-
nian and Ramaraj6 considered the independence polynomial (under
the name color polynomial) and pointed out several of its chemical
and physical applications.

In full analogy to Theorem 1 we have the following result.

THEOREM 2. If Gr’ Gr+1 and G ,, are Fibonacci graphs, then for
all k,
O(Gr+2’ k+1) = D(Gr+1’ k1) + oG, k) . {2)

Procf. It is known that the independence numbers conform to the

3 29
recurrence relatlonG’ r30

o(G, k+1) = o(G-v, k+1) + o(G-A_, k] (3)



- 86 -

where v denotes a vertex of the graph G and A, is the set contain-

ing the vertex v and all its first neighbours.

Consider the graphs G1, G2 and G3:




Applying (3) to the vertex Yo of G, we get
0(Gy, k#1) = 0(Gy-v,, k+1) + O(GB-AVO, k) . (4)
Applying (3) to the vertex vy of G3-v0 and to the vertex Vs of
G3—Av , we further get
O(G3_v0’ k+1) = O(G3~vo—v2, k+1) + 0(G3—AV2, k) (5)
o(G,-A_ , k) = 0(G,-A_ -v,, k) + o{G,-A_ -A_, k-1) . (6)
3 Vo 3 Vo 3 3 Vg V3
It is now easy to see that
GB—VO-VZ = Gz—vo E G3—AV2 = G1—VO
(7)
G,-A_-v, = G,-A
3 v 3 2 v H G,-A _ -A = G,-A
0] o] 3 Vg V3 1 Vg

Here and later the symbol = dencotes the isomorphism of the respec-
tive two graphs. Bearing in mind the isomorphisms (7), the rela-

tions (5) and (6) become

o (G k+1) = O(G2_VO' k+1) + 0(G1—vo, k) (8)

3 Vor
0{G,-A_ , k) = o(G,-A_ , k) + o(G,-A_ , k=1) - (9)
3 Vo 2 vy 1 Yo

Substituting (8) and (9) back into (4) we obtain

o (G k+1) = [o(G,-v

2 e
+ (o(GT-v

- k+1) + O(GZ—AVO, K)} o+

o’ k) + 0(G1—Av , k=1)}
6]

Since by (3},

o(GZ—vO, k+1) + O(GZ_AVO' k) = o(Gz, k+1)
and

o(G1—v k) + o(G1—AV . k=1) = o(G1, k)

L
2 (o}
it is immediately seen that Theorem 2 holds for r = 1. By a comple-

tely analogous argument Theorem 2 is proved also for r > 1.



In order to verify Theorem 2 for r = O, apply (3) to the ver-

tices Vor V4 and v, of 62 and to the vertex Vo of G1. This yields:
o(Gz, k+1) = o(Gz-vo—vz, k+1) + o(GZ—AVZ, k) +
+ o(GZ-Avo-v1, k) + O(GZ—AVO—AV1, k-1)
and
o(G1, k+1) = o(G1-vO, k+1) + 0(61—Av0, k) .
We have further
- - o~ - . - = G-
CorvgmVy ® GV ; Gy, = 0Tg
G,-A,_ -v, = G, -A
2 %y 1 1 7y i G,-A_ -A ® G.=A
o o 2 Vo V4 o] Vo

where the structure of the graph GO is presented on the previous

figure. Therefore,

]

o(sz k+1) - O(G1, k+1) o(G

o Vo’
= o(GO. L3

k) + O(GO-AVO, k-1) =

Thus we see that Theorem 2 is true alsc for r = O.

If vy is a vertex of degree one, then obviously,

G,-v, = G H G,-A E G1—v0—v1 = G“1

and consequently
0(Gqy k+1) = 0(Gy, k+1) + 0(6_1. k)

which shows that Theorem 2 holds also for r = -1, provided Vi (o
what is the same, vo) is of degree one.

This completes the proof of Theorem 2. X

As it is well known, the nonadjacent numbers m(G, k) are the

coefficients of the Z-counting and of the matching = acyclic = refe-



rence polynomial. The independence numbers are coefficients of the
independence = color polynomial and, if G is a Clar graph, of the
sextet polynomial. (For more details on this matter and further re-

16

ferences see ~,) Therefore Theorems 1 and 2 relate the matching
and the independence polynomials of Fibonacci graph.
We now point at some general properties of graph polynomials
whose coefficients conform to relations analogous to (1) and (2).
Let I(G, k) be a graph invariant depending on a certain para-
meter k (not necessarily an integer!). Let F(G, x) be a graph fun-

ction defined as

F(G) = F(G, x) = L I(G, k) xK (10)
k

with summation going over all relevant values of the parameter k.
(when necessary, the summation in (10) can be replaced by integra-
tion.)

LEMMA 1. Let GO,G1,G2,... be a sequence of graphs. If for any three

consecutive members of this sequence the relation

I(Gr+2’ k+1) = I(Gr+1, k+1) + I(Gr' k) (11)
holds, then also
F =F +xXF (12)

r+2 r+1 T
where for the sake of brevity we write Fr instead of F(Gr, x).

Formula (12) is equivalent to

r Fr—1 o] =

Proof. Substitute (11) into (10). X
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LEMMA 2a. If the relation (12) holds for all r = 0,1,2,..., then

Fr = F(Gr, x) can be presented in the form

_ =X
Fr (2 cos t)

{A exp(irt) + B exp(-irt)} =

r

= (2 cos t) © ((A+B)cos rt + i(A-B)sin rt}

where A and B are pertinent functions (independent of r), which

can be determined from the initial conditions (say, from the know-

ledge of Fo and F1) and where x = =(2 cos t)_2 and 1 = /=T.
Proof. The general solution of the recurrence relation (12) is of
the form32

= r r
B & A(A1) + B(A,)

where A and A, are the solutions of the auxiliary equation Az =
A + x. Hence,

=1

A s+ a/2 = (2 cos )7 (comt 4 sin t) =

iy 2
= (2 cos t) 71 exp(tit)
where the substitution x = -(2 cos t)-2 has been made. Lemma 2a
follows now straightforwardly. I

LEMMA 2b. If the relation (12) holds for all r = 0,1,2,..., then
Fr can be represented in the form

sin rt _ sin(r-1)t

sin t [¢] sin t L

F, = (2 cos t) " {2 F,(cos t)

where x = -(2 cos t)72.

Proof. Lemma 2b follows from Lemma 2a when the initial conditions
(r = 0 and r = 1) are explicitly taken into account. ]

LEMMA 3. Let us denote fr =F,. in the special case when F, = F

0 1
= 1. Then



fr = (2 cos t) % sin(r+1)t/sin t (13)
where x = -(2 cos t) 2,
Proof. Substitute Fy=F, = 1 into Lemma 2b and perform appropria-
te trigonometric transformations. bid

LEMMA 4. If the relation (12) holds for all r = 0,1,2,..., then

Fr can be presented in the form
F_=F, f + X F. £ § (14)

proof. Combine Lemma 2b with eq. (13). had

It is instructive to summarize Lemmas 1-4 in the following

way:
THEOREM 3. Let GO'G1’GZ"" be a sequence of graphs, having the
property (11) for all r=0,1,2,..., and let F(G) be defined via (10).

Then the recurrence relation (12) is obeyed and its general solu-

tion is of the form (14), where the function fr is defined via (13).

Bearing in mind that the Z-counting and the independence poly-

nomial of a graph G with n vertices and m edges are defined as
m

006G, x) = I m(G, k) x5
k=0
and
o k
w(G, x) = % ol(G, k) x
k=0

respectively, we arrive at the following consequences of Theorems
1, 2 and 3.

COROLLARY 3.1. If GO’G1'G2"" are Fibonacci graphs, then all the
results given in Lemmas 1-4 and in Theorem 3 apply to the Z-count-
ing polynomial 7 (G, x). One has to set Fr = C(Gr, %) and to cho-

ose fr to be the Z-counting polynomial of the path with r vertices.



COROLLARY 3,2, If GO’GT'G2"" are Fibonacci graphs then all the
results given in Lemmas 1-4 and in Theorem 3 apply to the indepen-
dence polynomial w(G, x). One has to set Fr = w(Grr x) and to
choose fr to be the independence polynomial of the path with r-1
vertices.

The matching polynomial is related to the Z-counting polyno-

. P e

mial via

=2

alG, x) = x" g6, -x ) .

Then Corollary 3.1 can be reformulated as follows.

COROLLARY 3.3. If GO'G1'GZ"" are Fibonacci graphs, then

a(Gr, x) = A exp(irt) + B exp{-irt) =
= (A+B)cos rt + i(A-B)sin rt
and
s sin rt _ sin(r-1t
alGy, x = alG,)557r=g ~ @G5+

where A and B are pertinent functions independent of r, x = 2 cos t
and sin(r+1)t/sin t is the matching polynomial of the path with

r vertices.
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