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Abstract. Five general procedures for constructing pairs of isospectral
graphs are delineated. The concepts of isospectral points and
unrestricted points in a graph are recapitulated, and methods for
constructing graphs with these features are described. The concept of an
infinite pair of isospectral graphs is illustrated. Nonregular isospectral
pairs of graphs whose complementary graphs are also isospectral are
discussed. The concepts and methods are utilized in the construction of
numerous pairs of isospectral graphs, including the smallest known
isospectral pair with six vertices, the smallest pair without pendant

edges, and 18 of the 33 known isospectral pairs with seven vertices.



1. Introduction

Isospectral graphs, sometimes called cospectral graphs, are graphs
which are not isomorphic, but whose adjacency matrices have the same eigen-
value spectra.l The concept of isospectrality is of particular interest in
chemical applications of graph theory where graphs, both labeled and unla-
beled, are universally used to represent molecular structures.2'5 In some
cases the eigenvalues of the matrix H = al + BA, where I is the identity
matrix, A is the adjacency matrix of a molecular graph, and a and B are
appropriate parameters, correspond to observable quantities. For example,
in Hueckel molecular orbital theory, these eigenvalues are the energies of
the pi molecular orbitals of unsaturated hydrocarbons.6 It has also been
shown that these eigenvalues can yield good approximations to the vibra-
tional frequencies of certain linear and ring compounds when H is iden-
tified with the GF |1'».a‘cr"ix.7 Because of these applications, methods for
finding or constructing isospectral graphs have some practical relevance,
along with intrinsic interest as a graph theory problem.

The existence of isospectral graphs also has relevance to problems in
coding and storage of chemical structures. At one time, it was postulated
that the eigenvalue spectrum of the adjacency matrix of a graph was a uni-
que property of that graph.a’9 However, the existence of isospectral
graphs negated this c.onjet:tur.c:.9 Later it was proposed that if a molecular
graph were labeled with appropriate symbols and the secular polynomial

10,12

obtained as a determinant, this polynomial would be unique. This also

s 4
turned out to be 1ncorrect..g’13’L

In fact, one completely general

algorithm was published that allowed one to construct pairs of isospectral
tabeled graphs no matter the degree of 1abe11'ing.“ Method 8.1 (see later
in this paper) presents a variation of that algorithm applied only to cases

of unlabeled graphs. Although the general methods for constructing pairs

of isospectral graphs can, for the most part, be easily adapted to labeled
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molecular graphs, the exposition in the present paper will be restricted to
unlabeled cases. The necessary elaborations for extension to labeled or
weighted graphs will be evident in context.

The problem of finding isospectral weighted graphs is trivial in the
sense that any two graphs corresponding to equivalent adjacency matrices
are necessarily isospectral. Thus, if Nl is the adjacency matrix of a
weighted graph Gy and if S is a nonsingular conformahle matrix, then the
matrix Wp = S‘1H15 will necessarily have the same eigenvalue spectrum as Hl.
If the weighted graph Gp corresponding to Wp is not isomorphic to Gy, then
Gy and Gz are isospectral. The only interesting problem is establishing
the nonisomorphism of Gy and Gp.

For nonweighted graphs, the problem of obtaining isospectral sets is
not as easily dismissed. Of course it is true that many pairs and larger
sets of isospectral graphs were discovered either by chance or by exhaustive

5 . " ; 71516
examipation of graphs of a particular size., *> 7°?

However, an interest
in construction methods is manifested by a substantial number of published
papers in which procedures to derive isospectral graphs have been

7 =29
outhned.ls

The purpose of this present paper is to list and give
examples of several construction methods that we have found useful. In
some cases, a resemblance to some of the other published procedures will be
noted. In part, this may be due to the fact that the general combinatorial
graph properties that allow the existence of isospectral graphs seem to be

quite limited. Be that as it may, our final conclusion is that all (or

nearly all) examples of isospectral graphs may be constructable.

I1. Secular Polynomials

Isospectral graphs necessarily have indentical secular polynomials.

Therefore procedures that allow one to obtain the secular polynomial from

11,30-36

structural properties of the graph are useful to help demonstrate
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that two nonisomorphic graphs are isospectral. Some other useful proper-
ties related to the secular polynomial are also reviewed in this section.
The secular polynomial of a graph G with adjacency matrix A is given

by the determinant

P(G) = det(A - AI)

+ ... tap (2.1)

n
&
3
>
+
o
>
’
iy

where I is the identity matrix. The eigenvalues are the roots of the
secular equation
P(G) =0 (2.2)
Since the eigenvalues of A are the roots of the secular equation,
(2.2), the secular polynomial can be expressed as
P(G) = (A -E)(A - E)) oo (A -E ) (2.3)

and the adjacency matrix itself satisfies the secular equation

a A" + 5 An—l

J o * oo tagl =0 (2.4)

Therefore, the coefficients of the secular polynomial are determined by the
traces of the first n powers of A. Two simple graphs, G1 and GZ’ are con-

sequently isospectral if and only if
k k o
trace(Al) = trace(Ag) v K E L 2y sues W {2.5)

These traces are called the spectral moments of the graphs. Relationships
between random walks, spectral moments, and isospectral graphs have been
delineated by RandiE.37

Decomposition techniques of Heilbronner‘,38 originally developed for
Hueckel molecular orbital theory have been usefully applied to the spectral
study of graphs. Suppose a graph G is composed of two subgraphs G1 and 62

joined only by an edge between vertex Py in G, and vertex p2 in GZ'

1
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Heilbronner showed that the corresponding secular polynomials obey
P(6) = P(G)) P(6,) - P(G-p;)P(G,-p,) (2.6)

where Gl-p1 represents graph G1 with vertex Py and all its connecting edges
removed. This algebraic device can be used to demonstrate isospectrality
of two graphs by reducing their secular polynomials to polynomials of known
isospectral or identical subgraphs,

For a labeled graph, the elements of the adjacency matrix are symbols

corresponding to the labels of the vertices and edges as shown in fig. 2,1,

a
t r a B
r b s
c b t s c

Fig. 2.1. Llabeled graph and adjacency matrix.
The secular polynomial of this graph is
P(A) = xyz + 2rst - xs? - ytz - ze? (2.7)

where x =a - A, y =b - X and z = ¢ - A. It may not be possible to factor

this polynomial completely.

IT1. Eigenvectors
Pl 1 U i ; th .
The i"" eigenvector of A, v, corresponding to the 7" eigenvalue, Ei’
satisfies the equation

A= (3.1)

The adjacency matrix, A, is symmetric. Consequently, its eigenvalues
are real and its eigenvectors corresponding to different eigenvalues are
orthogonal. Moreover, the eigenvalue relation can be written in terms of

the nonsingular matrix V, whose columms are the eigenvectors of A, and the
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diagonal eigenvalue matrix E according to

AV = VE (3.2)
The sum of the eigenvalues equals the trace of A, and the product of the
eigenvalues equals the determinant of A.

Relations (3.2) can be rewritten as

A = vev (3.3)
suggesting that a simple reordering of the eigenvalues along the diagonal
of £ would produce a new adjacency matrix isospectral to the first.
Unfortunately, there is no guarantee that the graph of the new adjacency

matrix would be simple.

IV. Isospectral Points

We have defined isospectral points of a graph to be two or more points
such that deletion of one of the isospectral points yields a graph which is
isospectral to the graph resulting from deletion of one of the other
isospectral points. The resulting graphs are not necessarily connected.

A classic example is provided by the indicated vertices of Schwenk's

graph15 shown in fig. 4.1.

/\/‘\/'\./

(x3 - 2x(x5 - a3 s 2x)
(x) (x

Fig. 4.1. Schwenk's graph with two isospectral points.

7 s 6x5 + 10)(3 - 4x)

where the secular polynomials for the resulting graphs are also depicted.
1t follows from Heilbronner's theorem that attachment of any moeity to one

of the isospectral points yields a graph which is isospectral to the graph
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resulting from attachment to one of the other isospectral points as

exhibited in fig. 4.2.

Figure 4.2, Nonisomorphic isospectral graphs.

We have also proved a theorem concerning coefficients of isospectral
points in adjacency matrix eigenvectors.17
Theorem: Let vk1r be the coefficient of the k" point in the
rth degenerate eigenvector of A corresponding to eigenvalue Ei with

degeneracy R. Then points k and 1 of G are either isospectral or

equivalent if and only if

X ir,2 i iry2
Y Y =y T 2 G e 0 (4.1)
r 7k

For the nondegenerate case, R = 1, relation (4.1) reduces to

B 9P = 0P W0y By e i (4.2)
which can be restated as
M T = e d e, 3
L] lvl | PO P (4.3)

Although it is important to identify and discard equivalent points--
points related by symmetry transformations-- this theorem can be a power-
ful tool for identifying isospectral points since it allows such points
to be identified from examination of tables of HMO eigenvector coefficients.
Other coefficient reqularities observed for isospectral graphs have
been reviewed, and have been used in several discussions of isospectral

graph structure re]ationships.ls’ls’“'Z6
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V. Unrestricted Substitution Points

An unrestricted substitution point is a graph vertex at which a
substitution of any kind yields a graph in which the vertices which were
isospectral in the original graph are also isospectral in the new

16,17,39

graph. Examples are vertices number 4 and number 8 in the styrene

graph in fig. 5.1.

Fig. 5.1. [Isospectral [o] and unrestricted [B] substitution points.

Using isospectral and unrestricted substitution peints it is pessible
to generate any number of isospectral graphs beginning with only a few
small graphs. Some examples of such processes will bhe given in sections

VIII to XII.

VI, Composition Methods for Pairs of Isospectral Graphs

Method 6.1. Take two sets of n +m (n + m > 2) copies of any graph A.
Join points indexed j, k, 1, etc., in n copies of A to points g, r, s,
etc., in m copies of A to form a graph. Then join points q, r, s, etc., in
n copies of A to points j, k, 1, etc., in m copies of A to form a second
graph. The two composed graphs are nonisomorphic and isospectral.

The graph A may not be Ll.w The sets of points j, k, 1, etc., must
be distinct fromgq, r, s, etc., and n nust differ from m. However, some of

the points in the two sets may be identical. In the examples to be given
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the starting components of the graph will be are shown by heavy lines, and
the joining edges are the lighter lines.

The six and eight point pairs of graphs in fig., 6.1 are the smallest

Dﬁ Pal Lm,c

Fig. 6.1. Isospectral graphs constructed from 'Lz.

obtainable isospectral pairs using method 6.1 and L2 as the prototype
graph. The b6-vertex pair is the smallest pair of isospectral connected
graphs, first reported by Baker‘.7 One can see that the series starting
with the pairs shown in Fig. 6.1 is an infinite family, so that pairs of
isospectral graphs with any even number of vertices larger than 6 are
available using L2 and 6.1, The number of pairs of isospectral graphs
that can be composed from n + m copies of L2 (two sets) is (n +m - 1)/2
if n + mis odd, and {n +m - 2)/2 if n + m is even. One also realizes
that there must exist pairs of infinitely large nonisomorphic isospectral
graphs, the pair based on L2 to be represented as in fig, 6.1. To our
knowledge, no examples of infinite isospectral graphs have been previously
studied.

There are over 20 9-vertex graphs that can be composed using method
6.1 and either \\_3 or C3 as the starting graph. The single pair of tree
graphs that can be constructed in this way and a few of the other pairs are

shown in fig, 6.2,

Method 6.2. Take two sets of n (n odd) copies of any graph A. Number the

graphs 1 through n. Form a larger graph by joining points indexed j, k, 1,



- b2 -

A~

0T
0
==
<]

Fig. 6.2. Pairs of isospectral 9-point graphs based on L3 and C3.
—_—< I :J<: l > a/"svjsli;sﬁfflz’"\s '--“5( I :>l:ia! :3"
skl :III Dé@wﬂ

Fig. 6.3. [Isospectral graphs constructed using method 6.2.
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etc., in even numbered graphs to points indexed g, r, s, etc., in odd
numbered graphs, no graphs to be joined to other than their nearest neigh-
bors. Carry out the complementary procedure to form a second graph

isospectral to the first. Examples are given in fig., 6,3,

VII. Expansion of Bipartite Graphs

Method 7.1. Star the vertices of a bipartite graph so that no two starred
vertices are connected by an edge. If the number of starred positions
equals the number of unstarred positions and they are not equivalent by
symmetry, add any graph, first to each starred pesition, then to each
unstarred position, to obtain two nonisomorphic isospectral graphs.
Equivalence as used above is to be taken in the structural sense. For
example, in any linear even bipartite graph the unstarred and starred posi-
tions are equivalent and isospectral graphs cannot be constructed using 7.1.
The smallest bipartite graphs with the required nonequivalent starred

and unstarred positions have 6 points and are given in fig. 7.1, along with

Fig. 7.1. Isospectral graphs from expansion of bipartite graphs.

the expanded 9-vertex isospectral pairs obtainable by adding L1 to each

separate set of vertices. The isospectral tree graphs in fig. 7.1 were

also constructed using method 6.1, as depicted in fig. 6.2.
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VIII. Construction of Graphs with Isospectral and Unrestricted Points

It is important to understand that the complementary graph of any
graph with isospectral points possesses the same isospectral points. The
potential pool of isospectral pairs of graphs obtainable by use of
isospectral points is therefore doubled. However, since the complementary
graphs of two isospectral graphs are not generally themselves isospectral,
the complementary graph with isospectral points must first be obtained, with
subsequent formation of the isospectral pair hy coalescence with other
graphs. See section X1 for a discussion of complementary graphs of
isospectral pairs formed by deletion of isospectral points. A1l of the
concepts are best clarified with examples, and several will be shown below.
Then we will give two general methods for constructing graphs with
isospectral and unrestricted points, and list additional properties that
are useful in constructing isospectral graphs.

The 8-point graphs listed in fig. 8.1 are the smallest graphs with
isospectral points, indicated by circles. The styrene graph in fig. 8.1

also has two unrestricted substitution points, indicated by squares. In

Fig. 8.1, Graphs with isospectral points.

that graph, deletion of an unrestricted substitution point converts the
isospectral points to equivalent points. Isospectral pairs containing 9 or
10 points that can be generated from the graphs in fig. B.1 are pictured in
fig. 8.2. Infinite numbers of isospectral pairs of any size larger than

8 vertices are available using the starting graphs in fig. 8.1.
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Fig. 8.2. [Isospectral graphs from isospectral points.
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Fig. 8.3. Isospectral and unrestricted substitution points.



Method 8.1. Use of n-fold symmetry. Take a graph containing points a, b,

¢, etc., that are related by an n-fold axis of symmetry (n > 2), and which
are not related by two-fold axes of symmetry. Delete point b or join any
graph to point b to generate isospectral points a and c.

The points a, b, ¢, etc., are required hy symmetry to have identical
absolute values of eigenvectors. The pairwise reciprocal relationships
a-h, b-¢, etc., are also identical from symmetry considerations.
Substitution at b destroys the n-fold symmetry of the graph, but has an
identical effect on the eigenvectors of a and c. The points a and c are
therefore isospectral and can he used to generate pairs of isospectral
graphs. Proofs of the preceding assertions can be obtained using various
HMO theorems and definitions given by Coulson and Longue’c-Higgens.t'1

The smallest graphs that correspond to the requirements of method 8.1
have 3-fold symmetry and 9 points. Three basic structures are outlined in
fig. 8.3, where circles and squares indicate potential isospectral and
unrestricted substitution points respectively. The complementary graphs
are very complicated and are not shown. The third example shows that a
single graph may have several sets of isospectral and unrestricted points.
Pairs of 9-point isospectral graphs are available by initial deletion of
the unrestricted substitution points and joining of L1 at one and then
the other of the two isospectral points. An example of such 9-point pairs

is given in fig. 8.4,

5% 1Y

Fig. 8.4, Isospectral graphs constructed using method 8.1.
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Method 8.2. A decomposition principle. We have found one additional way

to generate graphs with isospectral points. In certain graphs, the genera-

lized form of which is shown in fig. 8.5, there are two particular vertices

Fig. 8.5. Generalized graph with isospectral points.

related hy a pseudo-symmetric element in that deletion of one vertex
generates an identical graph to that formed from deletion of the other
vertex. The two points are therefore isospectral points. Examples of

graphs with isospectral points of this type are listed in fig. 8.6. Again,

S ol

Fig. 8.6, Graphs with isospectral points.

the smallest graph of this type has eight points so that (considering the

complementary graph) two 9-point isospectral pairs can be constructed.

IX, Properties of Isospectral and Unrestricted Points

Schwenk 's graph, fig., 4.1, with two isospectral points, and the first
graph in fig. 8.1, with isospectral and unrestricted substitution points,
will be used to illustrate the properties of isospectral and unrestricted
points, Several of the properties have to do with the maintenance of
isospectral points after coalescence with other graphs or addition of lines

(new edges) to the graph. In the context of this work, the importance of
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such alterations is that each change creates a new graph that can be used
to generate pairs of isospectral graphs. Alteration rules are as follows.
9.1. Attachment of identical graphs simultaneously at isospectral points
leaves the points isospectral.
9.2. Attachment of isospectral points to each other leaves the points
isospectral.
9.3. Attachment of isospectral points to a single point, equivalent,
or isospectral points in a second graph leaves the original points
isospectral.
9.4. Attachment of unrestricted substitution points to each other main-
tains the isospectral points.
ﬁ. Attachment of unrestricted substitution points to isospectral points
simultaneously maintains the isospectral points.
9.6. Attachment of unrestricted points through any graphical moiety to
isospectral points simultaneously maintains the isospectral points.

Rules 9.1 to 9.4 are illustrated in fig. 9.1 below, and rules 9.5 and

9.6 are exemplified in fig. 9.2,

/\A/Lv/ /\ﬂ

Fig. 9.1. Graphs with isospectral points derived from Schwenk's graph.
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Fig. 9.2. Graphs with isospectral points.

S9.7. For bipartite graphs only, the vertices adjacent to isospectral

points may be attached to one another directly or through any second graph
without affecting isospectrality of the isospectral points. For nonbipartite
graphs, adjacent vertices may not be directly attached, but attachment
through a single vertex in a second graph is allowed. Examples are given

in fig. 9.3.

Fig. 9.3. Graphs with isospectral points.

X. Construction of Isospectral Graphs Using Isospectral Points

[sospectral points may be located by trial and error, hy examination
of eigenvectors, or may be created as described in VIII. The graphs with
isospectral points may be altered as shown in section IX with retention of
the isospectral points. More than one of the procedures in section IX can
be applied simultaneously. Then, in addition to the fact that isospectral
pairs of graphs can be constructed by sequential coalescence of any graph

at isospectral points, the following two methods can also be used.



Method 10.1. Two different graphs attached to two isospectral points in a
reciprocal relationship generate pairs of isospectral graphs, as shown in

fig. 10.1,

®

® © O O
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Fig. 10.1. Isospectral graphs from reciprocal disubstitution.

Method 10.2. The procedures outlined in 9.5 through 9.7, if applied to the
two isospectral points separately in two copies of the original graph,
generate pairs of isospectral graphs. Examples are shown in fig. 10.2.
One can see that a very large number of pairs of isospectral 8-point graphs

are thus available.

o 66 A6
o 66 &

Fig. 10.2. [Isospectral pairs of 8-point graphs.
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kI, Isospectral Graphs From Deletion of Isospectral Points

Method 11.1 Deletion of isospectral points from a graph in turn, where the
resulting graphs are not disconnected or identical, gives a pair of
isospectral graphs.

Method 11.2 The complementary graphs of a pair of isospectral graphs that
were constructed using 11.1 are themselves isospectral if they are con-
nected graphs.

It can easily be demonstrated that if two nonisomorphic graphs have
the same characteristic polynomial (are isospectral) and are regular, their
complements also have the same polynomial. Method 11.2 indicates that
there is an additional class of pairs of isospectral graphs that are not
regular but whose complements are isospectral. Examples using methods 11.1

and 11.2 will be given in section XII.

XII. Isospectral Graphs With 7 Points

A number of the methods using isospectral and unrestricted substitution
points can be illustrated hy the construction of isospectral 7-point graphs.
Such graphs have heen exhaustively enumerated by Harary, ﬁﬂ.a There are
no isospectral tree graphs with 7 points, and there are 33 connected
isospectral pairs containing cycles. We think it interesting that 16 of
these isospectral pairs are constructible from a single precursor, the
8-point bipartite styrone graph in fig. 8.1 with two isospectral points and
two equivalent unrestricted substitution points. The syntheses of these
7-point isospectral pairs of graphs are outlined in figs. 12.1, 12,2, and
12,3, The generally used procedure was to employ rule 9.7 first, then 9.4
and 9.5. Subsequent deletion of the maintained isospectral points
according to 11,1 then gives a pair of isospectral graphs. The six pairs
shown in fig. 12.1 also have complementary graphs that are isospectral in

pairs, giving altogether 12 pairs of isospectral graphs. The last pair in
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fig. 12.1 is the previously reported smallest pair of isospectral graphs
without pendant edges..s

The complete graph with seven points has 21 edges. If the pro-
cedure outlined ahove gives isospectral graphs with more than ten points, it
is possible that a pair complementary to one of the already synthesized
pairs might be obtained. The graphs in fig. 12.2 are obtained by further

use of the outlined procedure, and do give isospectral graphs with more

Fig. 12.2. Isospectral graphs complementary to graphs in Fig. 12.1.

—>

+

P X

than 10 edges that prove to be the complementary graphs to the fifth and
sixth pairs respectively in fig. 12.1. Therefore, no additional pairs of
isospectral graphs have been constructed.

Continuing the procedure, one obtains the pairs with 12 and 14 edges
shown in fig. 12,3 These pairs cannot be the complementary graphs of any
one of the pairs in fig. 12.1, because the right-hand graph in each case
contains a vertex connected to every other vertex. Its complementary graph
would be disconnected, which is not true for the graphs in fig. 12.1.
However, the second and third isospectral pairs of fig. 12.3, are identical,
so only three new isospectral pairs of graphs have been constructed.

Further isospectral pairs might be available using the prototype graph

of fig, 8.1, If the isospectral points are each deleted in turn without
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Fig. 12.3. Three pairs of isospectral seven-point graphs.

joining adjacent points, graphs with identical characteristic polynomials
are created, but one of the graphs is disconnected. However, the comple-
mentary graphs are connected and could, therefore, constitute a new pair of
isospectral graphs. The pair of graphs in fig. 12.4 was constructed by
this type of procedure using the isospectral points without alteration in
the original graph. Since these constructed isospectral graphs must have
15 edges, they are not isomorphic to any of the former graphs, and so one

new isospectral pair is available in this way.
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Fig. 12,4, A pair of 15-edge, seven-point isospectral graphs.

The eight-point graphs in fig. 8.1 with 4-membered rings allow the
construction of two more pairs of 15-edge isospectral graphs. The proce-
dure outlined is to delete the isospectral points in turn and form the
complementary graphs as demonstrated in fig. 12.5. A check for noniso-
morphism with the previously obtained seven-point graphs is, of course, not
necessary, because of the method of construction.

Altogether, we have constructed 18 of the 33 isospectral pairs with
seven points from precursor graphs with isospectral points. The several
other procedures we outlined are not applicable to the seven point cases,
For example, the composition principles given in VI are not applicable
since seven is a prime numher, and bipartite precursors to seven point
graphs using the expansion method of VII are not possible. However, as
implied in the introduction, we helieve that other construction methods
await discovery, and that possibly all seven point isospectral pairs will

be constructahle. By inference, this belief can be extended to all

possible sets of isospectral graphs.
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Fig. 12.5. Two pairs of 15-edge, seven-point isospectral graphs.
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