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Abstract

A purely statistical approach to N-electron mononuclear sys-
tems is presented, The entropy-like functional of the elec-
tronic structure (" XN representation") turns out to inter-
relate the total energies of isoelectronic atoms and ions.
The resulting "combinatorial formula" for energies reprodu-
ces the corrected Hartree-fock data with the error about 25
ppm. The physical interpreatation of the representation re-
mains as an open questicon.

1. Introduction

The shape of the present day quantum chemistry seems to be
mostly formed by the notior of atomic and molecular orbitals
based on the independent particle model. The concept of the
orbitals, however, is but an approximation and, strictly apea-
king, orbitals do not exist [1]. Such terms as hydrogen-like
orbitals, self-consistent field orbitals, natural orbitals,
the Slater or Morse or Gauss orbitals do not stand for the
real physical phenomena; they are only artifacts of the app-
roximation used in the calculations, The dilemma stems from
the fact that, in general, the Schrdinger equation cannnt be
solved exactly, and some approximation methods must be intro-
duced,

A 50 years old approximation - the Hartree-fock method in
its Roothaan form - is at present the maost efficient technigue
for solving many electron problems in terms of atomic and mo-

lecular orbitals 11,2]. The main disadvantage of this method
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is the fact that the zimaining smcll error in energy is’ctill
tooc large as co.pared to chemical energy changes. The ahsclute
value of the error is of the same gider of magnitude a< the
quantity wkicn we would like to cuinpute., So that, even it the
Hartree-Fock furctions aie excellent approximations tc the cer-
rect wave functions, thay cannot provide quantitative agreement
far the calcuiation of birding energies and related quantities.
The so-called correstcd Hartree-fFock energics (those with the
total relativistic ccrrection) are believed to be much closer
to the experimental data (they aie for 25;20), but etill they
are affected by the neglect of lLwo corrections, namely the
effect of the finitc size of the nucleus and the correlation
enerny [3,4].

Coing beyond the Hartree-fock method one would apply the
so-called confiquratior-interaction method, but it generallv
takes a luige number of configuratians (a hundred or so terms)
to give a Lruly satisfactory wave function. Not only it reoui-
res an enormgous amcunt of computations, but also, ind what is
quite importart, the correspondence between orbitals and elec-
Lronic structure vanishes [5,6]. In short, the concept of the
electron orbital as a wave function which descrites one :lec-
tron independently of any others, is principally incurrect if
there is more than cne electron [7].

Recently [8 lue have introduced the concept of the so-
-called N representation of atomic structure, and reported
some preliminary results concerning the ground state energy of
atoms and their k-positive ions arranged according to the ge-
neralized Periodic Table criterion. It turns out that the tot-
al energy of atomic systems arranged that way is the linear
function of ZIr' Ir being the relative information content =
a functional related to our representation. We have also found
that this function is, in some way, compatible with the energy
expression [9] based on the? Thomas-Fermi model, In the second
part of our work [10], we started to examine the entropy de-
pendence of the ground state energy for iscelectronic series.
The key result presented there is the four-parameter enrrgy

formula the limiting behaviour of which exhibits consistency



with the 2=7

The aim of this note is to propose a modified form for the

parturbation expansion model.

energy expression in which only three parameters are involved.
This essential modification is based on the observation that
the initial finite difference equation can be reduced in its
order. To make this article sel f-contained, we recapitulate
here the relevant notions of the N representation; the novel-
ty is only in the method of the exposition,

2, Definition of the " A Representation"

In this Section we introduce a combinatorial mathematical
structure generated by the coupled sets of initial elements,
that is, of electrons and protons in the atomic system, As it
follows from the Schrydinger equation, the Hamiltonian of an

atomic system

N
We S (-YH2-2r ) S S /iy, (1)

i=1 i=1 j>i
depends on the numbers N and Z only
H=Hlgn, 2), (2)

N and Z being the cardinalities of the sets of electrons, E ,

and protons, P , in the system:
card (E)= N, card ( P)= Z. [3]

Therefore the structure of the system is, in principle, enti-
rely determined by the numerical values of the integers N and
1. Becausse the sets E and P are known to be physically rela-
ted, one might suspect that the system structure has something
to do with some binary relations in the cartesian product E x P,
By a technique of a free association, we anticipate these
relations will be functions f:E—= P, In general, for N £ Z,
we do not expect these functions to be one-to-onej we shall
just consider them as all possible mappings from the set E-=
= {91'92""SN} to the set P={p1,p2,...,pz}.

Given N and Z, we first note that any function f defines
some partition of E simply by f-1[pj) cE, Py eP.
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Thus, for instance, in the case of N = 3 and Z = 4, the func-
tions F1, f2 and F3

91__,,.--*P1 e1____,--- P'l 917 P,l
P / P P
_.___‘—’
e, 2 e, / 2 32/ 2
P p p
8y —""3 eq 3 eq 3 (4)
pli pll pd

() (f,) (fs)

define the respective partitions of E: §{§1§., e } ,{§3}.{?}},
O N N ¥ N ¢ N A X 1 R )

By inspection of this function diagram, we also see that each
function f defines the corresponding partition of Pdetermined
by the number of arcs which reach the vertices of the codomain
of f. In our example, the respective partitions of P are the
ﬂ:‘llc‘“ing:g{ppﬂzvps}t {Pa}}' {{P]}n {92}’ {p3’pd}} anﬂ{{l]1}v
PosParPy S

With this in mind, we shall now take into account the

physical principle of indistinguishability of electrons, and
the same principle regarding protons, These principles suggest
that some mappings f will be physically equivalent, so that

the set F =-{f|f:E — P}can be split into the classes of in-
distinguishable functions., Referring to the function diagram
(b), we see that Fos FZ and F3 would belong to the different
equivalence classes in F , Regarding partitions of E and P ¥
the particle identity principle imposes us to replace each
subset in the respective partition by its cardinality:

function E—Eartitiun FLEartition
2 (1,1,1,0) (3,1)
fs {2,4,0,0) (2,1,7) (47}
ty {3,0,0,0} (&)

Ue see that the partitions of E exhaust all possible partit-
ions of the number N = 3 into Z = 4 non-negative integers. UWe
alsa observe that partitions of P are dual to those of E in
the sense that their components are equal to the number of
repetitions in the [E-partitions.



Example [h,ﬂ')offers a general rule for splitting F into
the equivalence classes of indistinguishable functions f:E—P.
Given card (E)= N and card (P)= 2, 1et A denote a partition of
N into Z non-negative integers

k=(ﬂ1,n2,...,nz]; Zni=N; Ny =>ny for j > i (5)
A partition —7‘\ of the integer Z

X = (r1,r2,...,rq) 3 Zrk = 2 (6)
we shall call dual of N\ if r, are the subsequent numbers of
the repetitions in the sequence of n.,., From the preceding dis-
cussion it then follows that the pair (Rﬁ\)univocal.ly describes
the respective equivalence class of mappings f:E—+P, Houever,
since g:?\--b?\is a well defined function, two mappings f and
f'€ Fuill be equivalent if only they correspond to the same
partitinn\(ﬁ). The class of mappings f defining the same par-
tition N will be denoted F .

We now want to determine the number U[?\]of functions f in
gach class EL' ive., W)= card(Fh]. One way of dealing with
this problem is to interpret N as a particular distribution of
N identical objects in Z identical cells, from simple combi-
natorics it then follows [11] that

u(W)= N1zt (TTn, ! xmj!]’1 (7)

Moreover, since card (F) = z¥, the cardinalities of F, now def-
ine the "probabilities" of A as

P(n)= w(n)z™V

Speln)=1 (8)
Consequently, the family (lattice [12]) N ={7\1,7\2,...,7\L}
of all defferent partitions (5), equipped with the probability
measure (8), forms the probability space

(A,X;P} (9)

of all mappings F = {F[F:E—bp}subdividsd into L equivalance
classaes R of indistinguishable functions. The probability
distribution P (EQS, 7,8 ) is induced here by nature of the
particle identity principle, and the space itself is genarated
exclusively by N and Z = the cardinalities of E and P.
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It is gur ides to cecnsicor the space just defined as a sort
of statistical model (reuresentatiun) of the atemic structure.
In its spirit, this idea seems to be claosely connected both
vith the Loge Theory [13] and the Information Theory [1&] app=
roaches to many electron problems. The point is that the state
of an electronic system is, in each case, associated with the
"leading event" in the respective probability space. The essen-
ce of our approach is that the ground state of an atamic system,
specified by N and Z, is represented by this partition N faor
which the corresponding class F.  af functions f:E—P is mast
numerous (card(Ek) = U(h.): max ), that is, by the one for which
PN} = max. Referring again to our current examplz (a,a'], we

have
fFunction class, P win), eq.7 p(N), £u.8
{1,1,1,0) 24 0, 3750
{2,1,0,0) 36 0,5625  (a")
(3,0,0,0) 4 0.0625

Thus, according to our idea, this case of N = 3 and 7 = 4
would correspond to the ground state of Be+, represented by
the partition N = (2,1,0,0).

As for some integers N and Z the probability P\ ) may
have an improper maximum for more than one partition, the above
symbolic representation can be degenerate, for example, in the
case of the nitrogen ion N* (N:ﬁ, Z=7) there are tuwo partit-
ions {(2,2,1,1,0,0,0) and (2,1,1,1,1,0,0) with the same maximum
probability equal to 0.32129% (EUS.?,B). Nevertheless, the
partition (5) which maximizes the expression (7) we shall call

the " N\ representant™, and, in general, the image
(v,2)>( A N5 ) (10)

will be referred to as the " N representation” of the corres-
ponding atomic system in its ground state.

We therefore anticipate a mare or less pronounced relat-
ionship between the physical properties of atomic systems,
A(N,Z), and the mathematical features nF(_/\,T\; P).

In order to express physical quantities of A(N,Z] in terms

of the h.representation, we shall need some functionals



related to the probability space(}h\,TL; p). The most approp-
riate seem to be those borroued from the well established the-
ories [15]

S = 1n umax entropy-like

Le=inpP, .. amount of information (11)

H= -3 p{N}in p(N)Shannon’s function
These functionals pé?hit us to express the N representation
idea in more physical terms by stating that the ground state
of an atomic system is characterized by the maximum "entropy"
or, alternatively, by the minimum "amount of information",

Let us now turn our interest to the N representants them-
selves, Because the number L of the equivalence classes depends
rather strongly on N (for N=30, L=5604), it is werth noting[10]
that for N<g?Z = 2,3,...,33, the most probable partition of the
natural number N into Z non-negative integers is of a general
form

n m 1 K
(3,....3,2,...,2.1....,1,0......03' (12)

wvhere n = 0, 1, 25 m =0, 1, e, , 7 (m;;n] and, svidently,
1=N=23n-2mand k = Z = N + 2n + m. Thus any N represen-
tant can be identified by the pair (n,m) of tuwo integers:

o o m A

0 0 (1, «o. 41,0, «o. ,0)

) 1 Y N

a 2 {98890 naw 23385 s 21)

- ees ces (13)
1 [R5l ms s 550 e 30)

1 2 (z,2,2,1, «v. 41,0, ... ,0)

‘0 LY e

The mapping (N,Z)———b(n,m] is partly displayed in TABLE 1.
This mapping can also be described algebraically. It results
from the fact that the formula (7) applied for partitions (12)
takes the explicit form



umax(71)= Win,23 nym ) =
-1
= ezt [(3)7(20)™ atm! (N=3n-2m) ! x(2-N+2n+m)1] (14)

Now, by comparing W for any two (or more) types of partit-

ions, W(N,Z; n,m}= ET&,Z; n“,m”), one can easily find the doub-
ly (multiple) represented systems AlN,Z). For example, the
equality W{n,Z; 0,1) = w{N,Z; 0,0) leads to the relation
N1ZE/2{N=2)t {z-N+1)t = N1Z!/Z1(Z-N)!, or simply Z=(N{N+1)/2)-1.
Thus, if N and Z are related that way, the respective atomic
systems A(N,Z) are doubly represented by the (U,1} and [U,D]—
type of partitions. At the same time , these systems stand for
the turning points between two types in the poset of the N
representants, Therefore, if Z =2 N(N+1]/2, the corresponding
systems are represented by the {G,D]-type of partitions. In a
similar way, one can describe any part of the whole map
(N,Z)—»{n,m):

Z/N-relation N-type, (n,m)
ZoN(N+1) /2 {0,0)
z=N{N+1) /221 (o,0),({0,1)
N(N-1)/4=1/2<Z<N[N+1)/2-1 (o,1)
Z=N{n-3)/6+1/3 {0,1),(0,2) (15)
N(N=3)/6+1/3<2<N[N=1)/4-1/2 (o,2)

e R

The above construction of the N representation is purely
mathematical, and some possible linkages with physics are only
of a formal nature. This is a serious deficiency in our model,
because it makes physical interpretation very difficult.
Nevertheless, we feel that an examination of this formal stru-
cture will be useful even when its physical justification is
incomplete or unsatisfactory.
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3, lsoelectronic Series Problem

Now we must precisc vhat Is meant by saying that the n
representation reflects the ground state of many electron ato-
mic systems. Since the total energy E is one aof the most funda-
mental properties of atoms and ions, it would then be import-
ant to state a possibility of expressing £ in terms of our
representation. To proceed with the program of determining
E(Z;N], the energy of atomic systems with fixed number N of
electrons and varying number Z of protons, let us consider the
auxiliary guantity

0, = A(-E/2)/As (16)

where E/Z is the total energy per single proton, S = ln U
stands for the previously (EQ.11) defined entropy-likse func-

tional of the corresponding N representant, and
AM-£/2)= LE(z+13 N)/{z+1) - €(z; N)/2Z| (17)
As = sl{z+1; N) - s(z; N) (18)

Taking the corrected Hartree-fFock energies, EcHF’ as the
basis for the cemputations [4], let us next examine the fun-
ction u: Z‘A-D1. Mainly for considerations of space, we shall
here confine ourselves to picture only the cases of N=6 and
N=7 (FIG,1). As it is seen, the plots D1 vs. Z reveal some
singularities which (TAB.1, EU.15) appear ta correspond exac-
tly to the doubly represented systems, namely N+, Ca1d+, Ne3+
and Co'2*, The respective plots for N=3,4,...,13 shou that in
each case of isoelectronic series under study, the N repre-
sentation degeneracy invariably manifests itself by singula-
rities of the function u: Z-—bD1. Anothsr permanent feature
aof these plots is that, for singly represented systems, D1
appears to be highly regular function of Z, Since the total
energy is involved in 01, the above abservations make clear
the physical meaning of the A representation classification
and, by the same, make the representation idea plausible
itself.
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Judging fram the plots like those in FIG.?, one might re-
cognize D,| as simply linear function of Z. Numerical examina-
tions, however, reveal some curvature which, being scarcely
appreciable for N>5, becomes almost visible for the louer-N
cases, It is difficult to say, but the latter feature seems to
be partly explained by the fact that the 7L representation is
the statistical concept applied for the reather small particle
numbers, so that some more or less diffused limit of its re-
liability can exist, In any case, one may try to remove the
curvature in question by introducing a guadratic term into
/-dependence of 01, and then get the relation

Al-e/z) = 0, As, [19)

where now

0, = 01(2; N, N)= du{”"")* d (N, N)z + uz(n,n)zz (20)

d2 being expected to be very small as compared with d1.

This is, of course, just a finite difference equation
relating the increment of -£/Z to the entropy increment. The
analytical form for the energy expression can be therefore
obtained simply by "integrating" EU.19, that is, by carrying
the summations

S As, SzAs and TEAS {z1)
It can easily be done by considering the entropy definition
(EG.11) in combination with EQ.74. Applying then EU.18, cne

gets the explicit formula for the entropy increment

AS =1n{zZ + 1)/(Z - N+ 20+ m + 1) (22)
With this basis, the calculation of the sums (21) becomes
almost self-evident, so that we can immediately uwrite our key

result in the form 727 -1

2 o
-E{z; N,N)= [-EO/ZO + Z "i( § ot 1n vm)]xz (23)
i=0 oL=0
where
Yoo = Y (%3 zU,N,m,n) = (z°+1+ a}/(zo-n+2n+m+1+oc) (24)

ZD being the atomic number of the first system in the

sequence in which the summations (21) go over, and E0=Ef20).
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With EQUATION {23) we have got total energy of isoelectro-
nic systems related to their N representants, the latter being
determined here by the values of n and m. This equation, however
is, in a way, just a semi-empirical formula in which three para-
meters do, d1 and d2 are involved, Thus, to examine the correc-
tness of our energy expression, it is necessary to find the d; -
-values for each sequence of N-electron systems represented by
the same type of partitions (13). Since we cannot do this by
means of any sort of "ab initio" computations, we are then for-
ced to employ the standard least-squares method.

Let us start from the case of N=7 electrons (FIG.1). Here
we have thres series of systems represented by (D,Z), (8,1)
and (0,0)-typs of partitiens, the last two of them being long
ennugﬁ to perform the least=sguares fits. Exluding the singul=-
ar points aof the function u: Z-—-Dl. ue choose 20=11 for the
(D,1]—type, and Zo=28 for the (G,O}-typa af the ™ represent-
ants, Hence, according to EQ.24, Y =(12+%)/(6+x) and Yg =
=(29+0t)/(22+&) respectively. After having introduced these
quantities into EW.23, and then fitting this equation to the
corrected Hartree-fFock data [4], one gets du= 2,29839 a,u.,
d1=U,283886 a.u. and d2=D.UUﬂGBSd7 a.u., for the first series
and, respectively, 6,02134, 0,.252455 and 0,0007278 for the se-
cond one, The comparison betueen the original data, EcHF’ and
those reproduced by EQ,23, E?U is presented in TABLE 2, It is
seen that the errors of E“ are remarkably smallj in the case
of (U,D)-raprasented systems one may even state that there is
no error at all, The mean absolute error is found to be D.0134
a.u. for the (D,1)—series, and only 0.0008 a.u., for the (D,0)-
one; the respective mean relative errors are squal to 0.003%
and 0.00005%, or, simply, 30 ppm and 0.5 ppm,

The neuralgic point in discussing the accuracy of our ener-
gy expression is that there is also some intrinsic error in the
Hartree-Fock data themselves, apart from that of the unrelati-
vistic correlation energy. for example, applying the test of
the virial theecrem, V.T., that predicts a value of -2 for the
ratio P.E./K.E. of the potential and kinetic energies [ﬂ , one
finds the relative error, ((V.T.+2)/2)10%, af the HF-5CF computa-
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TAB.2. Comparison of the corrected Hartree-fock energies,
E.nyp» and those reproduced by EUW.23, £, , for the
7-electran atomic systems.

All energies are in a.u..

ks Z “Eenr “Ex J?ﬁ?éiii, %
12 187.1485 187.,1739 0D.01386
13 223.5272 223.5533 (o5 b g
14 263.1926 263.2079 0,0058
15 306.1503 306.1515 0.0004
16 352,4064 352,3956 0.0031
17 401.4677 401.9505 0.0043

(o,1) 18 454,8419 454 ,8235 0.0040
19 511.,0358 511.0232 0.0025
20 570.5591 570.5559 0.0006
21 633.4198 633,4278 0.0013
22 699.6277 699, 6445 0.0024
23 769,15829 769.2113 0.0024
24 842.1253 842,1322 0.00C8
25 918.4361 918, 4137 0.0024
29 1257.6899 1257.700 0.0001
30 1351.084 1351,084 0.0000
. | 1447,923 1447,922 0D.0001

fo,0) 32 1548,231 1548,230 0.0001%
33 1652,022 1652.022 0.0000
34 1751.313 1759.313 0,0060
35 1870.118 1870.119 0.0001
36 1984, 456 1984, 455 0.0001




=

tions coming up to 13,7 ppm in the relatively simple case of
the two-electron atomic system F?+. This errar is of the same
order as that of our regression equation.

To complete the discussion of how well this eguation is
fitting, let us alsop examine the residual mean squares RMS- a
measure of variance,and the multiple correlation coefficient
squared MCCS. In our current example, we find RMS = 3.39'1D-a
and MCCS = 0.99999999 for the (ﬂ.l)—case, and, respectively,
1.&-10-6 and 0,999999999999 for the (U,G)-one. Since MCCS=-value
represents the fraction of the total variation of E accounted
for by the fitted equation, the result reported tells us that
the total variability of the energy is modeled by EQ.23 at
least in 99,999999% or, equivalently, at most 0.000001% of the
total sum of squares is left to be explained.

We are now prepared to extend the examination of EQ.23 to
the other cases of isoelectronic series. The aim of these stu-
dies is to prove that our energy expression keeps to be remar-
kably accurate for as many as fourteen N-electron sequences,

(N = 5,6....,13}, distinguished by the different types of the
Nrepresentants involved. The results of fitting EQ.23 to the
corrected Hartree-Fock data are summarized in TAB.3,

ARs it is seen, the variance (RMS} keeps within the bounds
of the 10-& level with only one excepticn for the cass of N=8
electrons, Apart from the case of the rather ahort series of
S5=electron systems (d.F.=S), the MCCS-values are invariably
higher than 0.,99999999, The averaged mean absoclute error, equal
to about 0,01 a,u. or, equivalently, 0.27 eV (6.7 kcal/mol),
makes our equation nearly satisfactory even from the chemical
point of view, Finally, the averaged mean relative error, egual
to 25 ppm (0.0025%), is nearing the error limit of the Hartree-
-Fock approximation itself.



TAB.3. The results of fitting £4.23 to the corrected

Hartree-fock data (Ref.4).

N (n,m) ¥ i THE RMS mCes
{o,1) 5 13 142 2,08(-4) 0.99999996

. (0,0) 15 36 35 8,21{-4) 0.999999996
(0,1) 8 18 46 1.24(-4) 0.999999992

8 {o,0) 21 36 5 6,42 (=5) 0.999999999
{0,7) 1 25 30 3.39(-4) 0.999999994

* (o,0) 28 36

8 (0,1) 14 34 35 2,06(-3) 0.999999991

9 {o,1) 11 27 13 4.46(-4) 0.999999998
(0,2) 13 19 1.91(-5) 0.999939999

0 (g,1) 23 36 4 5.80(-5)  0.9993999998
{0,2) 6 25 8 6.78(-5) 0.9999999991

i {0,1) 28 36 0.5 2.28(-6) 0.99999999998

12 (0,2) 19 31 8 1.34(-4) 0.9999999991

13 {o,2) 22 36 8 2.41(-4) 0.9999999992

MRE =~ mean relative srror, ppm

RMS - residual mean sguares

MCCS - multiple correlation coefficient squared



4, Concluding Remarks

Details having already been discussed in the appropriate
sections ([see also Ref. 8,10), we wish to bring out here only
the main points of the results presented.

Eguation (23) introduces a particular dependence on Z in
the total energy of N-electron atomic systems, What is most
important is that, to say nothing of the surprising accuracy,
the explicit form of this energy-entrapy relation is rigorous-
ly defined by the type of the corresponding N\ representants,
In other words, the classification of atomic systems according
to the different forms of their N representants appears to be
essential for the quality of EW.23. It might be argued that
this feature is to some extent arbitrary, and that any mathe-
matician could canstruct simpler functiens that were just as
suggestive., To this we can only reply that we were led to our
equation by the independent idea of the 7\ representation it-
self. On account of this, without pretending to have a definite
answer to a problem of the physical interpretation whose dif-
ficulty can scarcely be measured, we venture to suggest that
this idea, after being subseguently scrutinized, may be help-
ful in understanding the collective behaviour of the electrons
present in the atomic systems.
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