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Besides the topic mentioned in the title, the main intention of this
contribution s to «call attention wupon the interactions between
mathematics and chemistry. Any combinorialist is probably aware of the
fact that the phenomenon of isomerism, that is, the occurrence of
different chemical compounds with identical composition gave rise to
the notion of constitution, thus providing one of the roots of graph
theory. Similarly, the problem of counting isomers initiated Polya's
theory of enumeration under group action. Today such interaction is
much better established between mathematics and other sciences such as
physics, of course, but also engineering and economics. There exist
well-defined borderlands 1ike mathematical physics, system theory and
operations research; even biomathematics has been created recently. So
where is mathematical chemistry today? There was not much activity in
this field for quite some time, due to twenty years of computer craze,
where theoretical chemistry was commonly identified with numerical
quantum chemistry. By now this long lasting computer age seems to come
to an end. So, in recent years, growing attention 1is again being
directed towards qualitative understanding of chemical phenomena. As a
consequence, renewed interest in mathematical structures, to be
employed in rigorous formulations of chemical concepts, can be
observed.
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Since the days of Cayley, an everlasting problem of mathematical
chemistry has been the description of molecular structure. This is a
"dynamical" problem because chemistry makes wuse of a hierarchy of
levels of observation, which goes on growing due to the development of
new experimental techniques. So the theory division had and has to
follow, supplying corresponding levels of description. Roughly speak-
ing, molecules are built up from fragments of comparatively few types.
For these, the constituent atoms may be taken, but in organic chemistry
(i.e. the chemistry of carbon compounds) a number of polyatomic
fragments have been recognized as quasi-invariant building blocks of
molecular structure. On the Jowest Jevel of description only the
composition of molecules with respect to certain types of fragments is
recorded. The next level specifies molecular constitution, that is, the
bonding connectivity among the fragments. On this Tevel, molecules are
represented by graphs with coloured vertices, say, if we agree upon
using colours to represent the various fragment types. On the next
level, opening the door to what is called stereochemistry, molecules
are recognized to 1live 1in 3-dimensional space. On this Tlevel the
description records qualitative geometrical features, as e.g. by means
of the popular rigid stick & ball models. Looking closer, most mole-
cules are recognized to be flexible, and by high-speed experiments it
is possible to distinguish among rapidly interconverting species which
formerly collapsed into one average configuration. And chemistry goes
on, but we will stop here and confine ourselves roughly to the level of
stick & ball models. This is where Polya's enumeration theory has its
most immediate applications in chemistry.

These applications refer to the notorious “isomer problem" which may be
stated as follows: With respect to some specified fragmentation, two
molecules are called isomers, if they have the same composition. The
problem then is to describe all the isomers for any composition. In
such a general setting this problem is much too hard. E.g. on the
simple level of fragments being atoms and structure being bonding
connectivity, the isomer problem would be to describe all the graphs
with n vertices, say, of given colours and degrees. The only way to
perform this is by means of some good computer program as e.g. develop-
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ed by the Artificial Intelligence Group at Stanford in the 70's. Also,
the corresponding enumeration problem is still unsolved. The situation
becomes exponentially worse as stereochemical characteristics are
included. So the only reasonable thing to do is to break down the
isomer problem into a variety of easier problems by restriction to
tractable subsets. Such subsets arise e.g. from some parent structure
through substituting simple fragments, say hydrogen atoms, by other
building blocks. Evidently, such structures are parametrized by
mappings between finite sets. Let us adopt the following notation: We
have a finite set P = {1,2,...,i,...} of positions, where substitution
may take place in the parent structure, and another finite set of types
of substituents including the basic fragment that is present everywhere
in the parent structure. The common name is ligands, hence we call this
set L ={A,B,...,K,...}. Then any mapping @:P —> L represents a deriva-
tive structure if CP(i)=X is taken to say that there is a fragment of
type X in the i'th position. In lucky (and mathematically dull) cases,
the correspondence between mappings and derivative structures is
one-to-one. O0ften, however, it is many-to-one, that is, a given
structure has several equivalent descriptions in terms of mappings. In
most such cases, this equivalence is due to some symmetry of the parent
structure. E.g., the familiar formulas of benzene derivatives are
represented by mappings from the set P = il,...,6 }of ring carbon atoms
into a set L = LH,X,Y,...} of ligand types. However, because of the
hexagonal symmetry of the benzene ring, there are many duplicates: any
formulas that are mutually interconvertible by rotations from the
dihedral group Dg provide equivalent descriptions of the same compound.
So the final result is that the benzene derivatives with ligands in L
are in one-to-one correspondence with the orbits in LP := {q):P —>L}
of the dihedral group Dg, where this group acts by acting on P, i.e. by
permuting the positions of the ligands. Analogously, many families of
(molecular and other) structures are parametrized by the orbits of a
finite group G in a finite set LP? of mappings. With respect to applica-
tions in stereochemistry, on the level of stick & ball models, mappings
are interpreted as distributions of model ligands over specified sites
of a parent "skeleton" fixed in space. The group in action is the
skeleton symmetry group or a subgroup thereof, which arises by inter-
section with the invariance group of the observation level in question.
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There are now serveral possibilities, of increasing complexity, of how
this group action looks Tike in detail. First and foremost, a symmetry
operation acts on distributions by removing the 1ligands from their
original positions to other sites, that is, by permuting the positions
of ligands. Note that this site permutation does not depend on the
ligands that are moved. If the ligand symmetry is sufficiently high as
e.g. in the case of balls, this rearrangement will be the only effect.
Formally, in such a case of pure domain action, a group G acts on the
set of sites, P, by permutations ’ng attributed to the g€G, and g€G
operates on mappings (P: P—>L by taking to site TBg(i) whatever ligand
X 2CP(1') originally was at site i.
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If the ligands have some structure of their own, it may happen that a
symmetry operation, besides moving the T1ligands, also changes their
types. As the mildest increase in complication, this transformation of
ligand types takes place independently of the positions. That is, we
have simultaneous actions on domain_ and range: A group G acts on P as

above, and moreover G acts on L by permutations ?Lg, ge G. Hence g€G
operates on mappings (P: P — L by taking to site 'I'Cg(i) any image
X = CF(i), while transforming it into lg(X).
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Finally, and most awkwardly to deal with, the fate of a 1ligand may
depend on its initial and final position. Then there is an individual
action of G on L, g ka—}%} for any site ieP, and the action on LP is
given by

1T i TCq(4)
X Xg(x)

With the first of these actions we are on solid ground. This is the
type considered by Polya in his classical paper (1937), where the
associated restricted isomer problem is solved as follows. First we
have to define composition, and we do this in almost the same manner as
in chemistry, by writing H20 instead of H20 for the composition of the
water molecule from two hydrogen and one oxygen atom. So we use the
same symbols to denote 1ligand types as well as "indeterminates"
assigned to them, and we record the composition of a mapping (?: P—>L
by means of the monomial

Tt l o'
M(@) :=TTe(i) = 3 omg(X) = (X)
B el 1 * ’

consisting of the ligands to the power of their frequency among the
images of the various sites. We call this monomial the gross formula
och. Clearly then, since the group G acts by site permutations exclu-
sively, mappings in the same orbit have the same composition. So Tet M
be any gross formula, that is, a monomial over L of degree IP[. Then

Py o= § pelPim@)-m}

is a G-subset of LP, and its orbits are in one-to-one correspondence
with the isomers of composition M. Their number is given by Polyas
famous enumeration theorem.



- 246 -

Theorem (Polya): The number of G-orbits in LPM coincides with the
coefficient of M in the generating function

Ll stiiid,

kz1 ~XeL qe6r

where ck(-) stands for he number of cyclic factors of length k, and the
brackets denote averages.

The next item 1in the stock-in-trade of combinatorics books is a
generalization of Polya's theory, due to de Bruijn, which was christen-
ed "Power Group Enumeration" by Harary and Palmer. Unfortunately, this
is not what is required for the analogous treatment of type II actions.
Chemists realized that, and they closed the books, concluding that for
certain chemical enumeration problems solutions & la Polya were not in
sight. We will first discuss what is wrong with de Bruijn's approach
from the viewpoint of chemistry and then sketch the easy way out by
dropping a seemingly canonical restriction. De Bruijn introduces a
second group H that acts on L by permutations Kh, so the direct
product HxG acts on LP by H acting on the range and G acting on the
domain of mappings, i.e.

-1
{h,g): g —> ’l&ocpo-toa ;

But now the mappings within an orbit no longer have the same composi-
tion. So de Bruijn introduces a coarser notion of composition that
refers to the H-orbits in L instead of the single elements. Letting f
denote the H-orbit in L that contains X, and using the same symbols as
indeterminates as well, the composition of a mapping q) is now defined
by the monomial

LT

i€ P

A
M(q:)

In this setting de Bruijn arrived at an analogue of Polya's theorem as
follows.
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Theorem (de Bruijn): The number of (HxG)-orbits in LPw is given by the

coefficient of M in the generating function
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So now, which are the problems in making use of this result in the case
of type II actions? First, the group is wrong. In de Bruijn's approach
there are two groups which act jointly but independently on range and
domain of mappings. We rather need a single group that simultaneously
acts on both these sets. But this is no serious trouble since two easy
steps take us home: specializing to H = G and next restricting the
action of GxG to its diagonal subgroup. The second, more serious
objection is that the classification, as provided by de Bruijn's notion
of content, is too coarse. Let e.g. the group be the simplest reflec-
tion group, G = Le,d}, and let P = {1,2,3,4} denumerate the boxes in
the square array below. For L Tet us take the letters of the alphabet
together with their mirrow images, ir distinct, 50
L = {A,B,ﬂ,...,Y,Z,S 5. Mappings from P to L are visualized as arrange-
ments of letters. G = {e,d} acts on LP by ¢’ reflecting any arrangement
while e of course fixes them all.

X Y a Y X

Then e.g. the composition 7% includes five distinct monomials: 24,
3%, 2252, 23, x4, However, the mappings of gross formula 72 X2
constitute a proper G-set by themselves, as do those belonging to 73X
or Z X3 and those associated with the other mirror image pair b
So one should 1like to have these orbit numbers separately, not Just
their sum! Then, why attribute such crude "weights" to mappings?
Because they are demanded by the so-called weighted version of Burn-
side's Lemma, which 1is customarily employed in the derivation of
generating functions for orbit numbers.
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Burnside's Lemma (weighted version): Let a group G act on a set S, and
let w:S—>_{ be a "weight function" that is constant on the G-orbits in
S. Let Sy denote the subset of fixed points of g & G, and Tlet

S = w-1(w) be the fibre sitting over we L1 . Then
< > w(s)> - > W,
SESg geG well

where n(w) is the number of orbits in Sy,

Applications of this result are restricted to weights that are constant
over the orbits. The monomials M(?) have this property in the Polya
case. In the de Bruijn case they don't, and looking for the closest
admissable analogues, the ﬁ(c?) inevitably appear. With these two
choices of the weight function, the average sums of fixed point weights
are readily evaluated, resulting in the theorems cited before. It turns
out, however, that the restriction to G-invariant weight functions is
unnecessarily strong. Analogues of the weighted Burnside Lemma exist
for a much larger class of weight functions. However, we will not
discuss the most general version here but just the one we need at
present.

Lemma (almost Burnside's): Let a group G act on a set S and on S o1 |
set of weights, as well, and let w : S —> {1 be a G-map, i.e.

w(gs) = gw(s) in obvious notation. Finally, let 6 be any G-subset of
A, and let Sg = w-1 [0] denote the subset of elements in S with their
weights in 8. Then

< > o> > e,

S€Sg g€t we L

where EE: n(w) is the number of orbits in Sg.
weg
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So, alse in this quite more general situation, the coefficients of
weights in the average sums of fixed point weights provide us with
orbit numbers. Our result readily applies to type II actions as
follows. Here we have S = LP with G acting simultaneously on P and on
L. {1 is the set of monomials of degree |P| over L, as before in the
Polya case, and likewise the weight function is again w : qika-M(T).
is readily confirmed to be a G-map, which is quite obvious if mappings
are identified with words over L taken as a strictly non-commutative
alphabet, their weights being the corresponding monomials over L as a
commutative alphabet, this time. The objects that now characterize
composition are the G-orbits of monomials. We call them generalized
gross formulas. These orbits are the natural substitutes of gross
formulas in the Polya case, since the weights of mappings in an orbit
range precisely over an orbit of monomials. Now a straightforward
computation of the average sum of fixed point weights in the generaliz-
ed Burnside Lemma yields the final result about the restricted isomer
problem in the case of type II actions.

Let 8 be a generalized content, that is, a G-orbit of monomials of
degree |P| over L. Then

:=[q.eLP|M(<(;)ee}

is a G-subset of LP, and its orbits are in one-to-one correspondence
with the isomers of composition 8. Referring to their enumeration we
have

Theorem (almost de Bruijn's): The number of G-orbits in LPg is obtained
by summing over @ the coefficients of the monomials M € & in the

generating function
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As a concluding remark, the generating function above "produces" the
compliete series of orbit numbers for the various generalized contents.
In case that one is rather interested in some single such numbers it is
worthwile noting that the generalized compositions may be replaced by
ordinary ones while simultaneously the group G s replaced by an
appropriate stabilizer, as follows.

Proposition (reduction to Polya type enumeration): Let © be an orbit of
gross formulas and M €8 be one of them. Denote by Gy its stabilizer.

Then LPM is a Gm-set, and there are equally many G-orbits in Lpg and
Gy-orbits in LPy.

Restricted to LPy, the action of any stabilizer Gy is of type I, hence
enumeration a la Polya is applicable.

Finally, the one-to-one correspondence above can be strengthened to the
existence of common transversals, thus providing the basis of an
efficient method to construct transversals of orbits. For details as
well as references to the Titerature the present authors paper in
Theoretica Chimica Acta 66, 91-110 (1984) should be consulted.
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