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ABSTRACT

Isospectiral sets of points in graphs are equivalent in the same manner
as are symmetry-equivalent sets of points. This allows us to transfer
observations concerning relations between symmetry-equivalent points to
less-obvious equivalent but unsymmetrical points. The equivalence of
isospectral points in a graph can sometimes be understood to resull from a
symmetrical equivalence in a simpler graph. The change to the more complex
graph destroys the symmetry but does not desiroy the equivalence between
the points. All the points in a pair of isospectral graphs are members of
isospectral sets. Arguments based on perturbation theory are used to

expose these relationships.



I. INTRODUCTION

Isospectiral graphs and molecules have been recognized to exist for
more than twenty-five years.! A graph is a collection of points
(vertices) connected by lines (edges).®® The adjacency matrix for a graph
is constructed by numbering each vertex of the graph and placing a one in
each row-column position of the matrix for which an edge exists, otherwise
a zero. The adjacency matrix for a graph is therefore constructed in the
same manner as is the topological matrix in simple Huckel theory. An
adjacency matrix is associated with a characteristic polynomial and a set
of eigenvalues. It was once thought that the polynomial and set of
eigenvalues for a graph might be unique, providing a convenient
"fingerprint" for purposes of storage of datia on molecules, but it has
since been found that nonidentical graphs can have the same polynomial
and sel of eigenvalues.l"5%-17 Such graphs are isospectral. Molecular
graphs are those representing realistic molecular structures (i.e., not
too many edges connected to a single vertex), and when such graphs are
isospectral, one speaks of isospectral molecules.

An important series of papers®3? gshows how one can use certain
special vertices in graphs to construct unlimited numbers of isospectral
graphs. Herndon and Elizey!? and Zivkovic, Trinajstic and Randic!? point
out certain relations which hold between the eigenvector coefficients at
these special points. A subsequent article by D’Amato, Gimarc, and
Trinajstic!® discusses similar concepts in the context of special pairs of
vertices. Our purpose is to generalize and extend the ideas presented in

these papers and to anawer some questions raised by D’Amato et al.!®



iI. DEFINITIONS AND EXAMFLES

Graph 1 contains isospectral points (open circles), which means that
the two nonidentical graphs resulting from substituting a structure at one
point and again at the other are isospectral. Thus 2 and 3 are
isospectral. Removal of isospectral points can be considered as a type of

substitution. Thus 4 and 5 are isospectral graphs. Let us refer to the

6 &g o

1 2

open-circled sites in 1 as linked isospectiral pecints, linked because they
occur in the same graph. Isospeciral graphs 4 and § have another
interesting property: They each possess a pair of vertices (circled)
which, when joined to a common vertex, result in twe new molecules which
continue to be isospectral. Thus 2 and 3 result from 4 and 5 respectively
by substitution of a four-vertex graph. 1 is the result of substituting

a single vertex into 4 or 5; thus there can be cases where substituting
into graphse like 4 and 5 produces one graph rather than two isospectral
graphs. Let us refer to the open-circled sets in 4 and 5 as unlinked
isospectral pairs (unlinked because each pair occurs in a different
graph). (Randic!® has proposed the term endospectral for linked

isospectral points.)
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Graph 6 contains linked isospectral pairs. One pair is labeled x,x’,
the other y,y’. (Either of the equivalent corners of the triangle could
be taken as an x’ site.) Therefore, graphs 7 and 8, which result from
bridging x,x' and y,y’ respectively with a single vertex v, are
isospectral. (Removal of the x,x’ pair from Graph 6 results in a graph
which is not isospectral with the graph produced by removal of the y,y’

pair.) A vertex which connects an isocspectral pair, like those indicated

’
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as open squares in 2, 3, 7, and 8, is called a bridging vertex.

Graph 1 contains also an unrestricted substitution point (solid
circle) which means that substituting any fragment at this site does not
destroy the isospeciral relation of the sites marked by open circles. As a
result, 9 and 10 are isospectral. We can view these as resulting from
attaching an arbitrary fragment F to the unrestiricted substitution point
in 1, followed by substitution at the linked isospectral points on the

resulting graph, or we can view them as resulting from first forming 2 and
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3, and then attaching F to the solid-circle site on each of these graphs.

Viewed in the latter manner, the solid-circle sites in 2 and 3 are
unlinked isospectral points, or substitution partners. Observe that
removal of these points from 2 and 3 resulie in formation of the same
graph. (Each of these solid-circle points in 1-3 has an equivalent point

related through the two-fold symmetry of the graph.) /
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III. EARLIER OBESERVATIONS, FORECAST OF CONCLUSIONS

Herndon and Ellzey!? showed that "isospectral points musi have
identical absolute values of eigenvectors in every nondegenerate
eigenlevel,” and also that the sum-over-degenerate-eigenvalues of squares
of coefficients at isospectral points must be equal. D’Amato, et al.l®
conjectured that, in linked isospectral pairs, "the sum of coefficients
at the x-marked vertices is equal to the sum in the y-marked vertices" in
each eigenvector, and also that "the bridging vertices serve as
substitution partners for the graphs" 7 and 8.

We show here how periurbation theory treats these aspects of graph
theory and reveals some previously unrecognized relations. Specifically,
we show that:

1) An absolute vaiue sum rule holds for isospectiral pairs in nondegeneraie

eigenvectors.



= 9%, =
2) The same absolute value sum rule holds for sets of degenerate
eigenvalues, both for isospectral points or for isospectral pairs, if
proper zeroth-order eigenvectors are used.

3
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D’Amato’s conjecture concerning bridging vertices is true in general.

4
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The sei of all points not included in the sets of isospectral poinis or
pairs itself has interesting properties related to isospectrality.

5) Isospectral points or pairs are equivalent in effectively in the same
manner as are symmetrically equivalent points, and sometimes this

results from a preservation of equivalence when the symmetry of a

molecule is destroyed by substitution.

IV. COEFFICIENT RELATIONS

The profusion of isospectral poinis, or pairs of points, linked or
unlinked is greatly simplified by the realization that isospectral points
(or pairs) are equivalent to each other in much the same manner as points
that are equivalent by symmetry. Consider Graph 11. The points a and a’

are equivalent to each other by symmeiry, as are b and b’. Substitution

a b b’ a’ a b b’ a’ a b b’ a’
c c
11 12 13

of a vertex at b gives 12. Substitution at b’ gives 13 which is obviously
the same graph, hence trivially isospectral. We will argue that this
situation is analogous to substitution at the isospectral points in 1,
which yields nonidentical graphs but identical eigenvalues, or nontrivial

isospectrality.
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Let us look more closely at the way in which substitution at b and b’
of 11 manages to produce the same set of new eigenvalues. Perturbation
theory?® yields expressions for the corrections to eigenvalues and
eigenvectors in terms of the unperturbed eigenvalues and eigenveclors. The
perturbation producing 12 is symbolized in 14: An interaction between an

isolated vertex and vertex b is turned on. All contributions to the

a b b’ a a b b’ a’
cC e Cl
14a 14b

changes in eigenvalues, and all coefficients for corrections to the
eigenvectors depend only on the following: Eigenvalue and eigenvector
coefficient for c, eigenvalues for 11, eigenvector values for 11 at point
b. Clearly, the only ones of these variables that can change when we
attach at b’ instead of b are the eigenvector values for 11. Indeed, the
eigenvector values do change because, in some eigenvectors, b and b’ have
coefficients of opposite sign. However, since we know that the eigenvalues
are the same after either substitution, we know that the perturbational
expressions for the eigenvalues must depend on absolute values of
coefficients rather than algebraic values.

For a specific example of this, the second-order correction to the

i-th eigenvalue is:

£ - & (1)
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where £¢ and ¢ are eigenvalues and eigenvectors, respectively, for Graph
14a and where H’ is 6cb, 8 Kronecker deita which permits vertex c to

interact only with vertex b. If we let £c represent the eigenvalue
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associated with the isolated poini ¢, and let bi be the coefficient at
vertex b in eigenvector ¢i, then it follows that (assuming gec<£i and

recognizing that the coefficient for vertiex c¢ is unity in ¢c)

bl
(2) =
e i~tc 2l

i.e., that the second-order corrections to the eigenvalues depend on the
absolute values of the coefficients at the site of attachment.

The recognition by Herndon and Ellzey!® thal "isospectral points must
have identical absolute values of eigenvectors in every nondegenerate
level" resulted from their perceiving the similarity of isospectral points
and points equivalent by symmetry. We propose that isospectral pairs of
points, like those in Graph 6, or in 4 and 5, likewise behave as
symmetrically equivalent pairs of points, like the pairs a, b, and a’, b’
in 11. Obviously, bridging a, b in 11 gives the same graph as does

bridging a', b’

a b b’ a’ a b b’ a’
c (o}
15a 15b

The perturbation operator for the former process is 6ca + dcb, leading to

a second-order expression for the eigenvalue corrections of

W - latby)?

Li—€c (3
Evidently, the fact that we get the same eigenvalues regardless of whether
we bridge a and b or a’ and b’ of 11 results (at least to second order)

from the fact that (atbi)3=(a’s+b’)3.
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Examination of higher terms in perturbation theory shows that sums of
products of sums over two eigenvectors arise of the form
(aitbi) (ajtby) (4)
(ei-£c) (£j~Ec)
and that the absolute value of such products must remain unchanged when a
and b are replaced by a' and b’ if the eigenvalues are to be the same. In
short, the points a and b are equivalent in concert to the points a’ and
b', For Graph 11 this is obviously true, since a and a’, and b and b' are
individually equivalent. For Graph 6, on the other hand, the individual
point x i8 not equivalent to y or to y'. It is not difficult to show that,
for a case like 11, where the individual members of the sets are
equivalent, there is an equality between absolute values of coefficient

products in each nondegenerate eigenvector, viz,

by = Ja'ib’| (5)

whereas such a relation does not exist for cases like 6.

The above findings require that the conjecture of D’Amato et al.!® be
modified to state that the absolute sum of coefficients at the x-marked
vertices equals the absolute sum of coefficients at the y-marked
vertices. Examination of the eigenvector list for 6 (Table I) shows that
this requirement is met for all the eigenvectors except the degenerate pair
at £ = -1.000. D’Amato et al. based their sum-rule on a coefficient

analysis of Graph 6 which yields the relation:

(x4x’)(14g) = (y+y’)(1+¢) (6)
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SN 2 2z 4
TABLE I. Eigenvalues and Eigenvectors for Graph 6. E>>T—,__.——1
sy x

Vertex ¢=2.228 £¢=1.360 ¢=0.186 £=-1.000 £¢=-1.000 £=-1.775

I(y) 0.090 0.485 -0.632 0.535 0.000 0.267
2(x) 0.201 0.660 -0.118 -0.535 0.000 -0.474
3 0.357 0.413 0.610 0.000 0.000 0.574
4(y’) 0.595 -0.098 0.231 0.535 0.000 -0.545
5(x') 0.485 -0.273 -0.284 -0.267 0.707 0.196
6 0.485 -0.273 -0.284 -0.267 -0.707 0.196

TABLE II. Proper Zeroth-Order Eigenvectors for Bridging x

points of Graph 6.

Vertex x bridge
1 (y) -0.354 -0.401
2 (x) 0.354 0.401
3 0.000 0.000
4 (y*) -0.354 -0.401
5 (x") -0.354 0.668
6 0.707 -0.267

v 0.000 #0.000
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They argued that the sum of coefficients over x,x’ points must equal
that over y,y' points. However, another possibility is that 1+¢ vanishes,
which is indeed the situation which pertains for the degenerate
eigenvectors at £2-1.000. Nevertheless, because these points are
isospectral pairs, our perturbation expressions lead us to expect that
these coefficients still manage to satisfy the absolute sum rule. That is,

we expect

[ritx" x| = yidyitysty’d (7)

where i and j now refer to the degenerate levels, and where we have
combined these degeneratle level terms since their denominators always
involve identical ¢ values. However, the numbers in Table I do not
satisfy this relation. The resolution of this problem comes from realizing
that a perturbational treatment over degenerate eigenvalues requires use
of proper zeroth-order eigenvectors. The proper eigenvectors, ¢, must

satisfy the requirement

OS> = 0 . (8)

Since we are comparing two different perturbations (H'x and H’y) we must
anticipate two different sets of proper zeroth-order eigenvectors.

Equation 8 leads to the following relation for Hx’:

(i@ + X O)vy@ + (x£D4x" D)@ = 0 (9)

An analogous expression applies for Hy’. Here i and j continue to refer

to degenerate eigenvectors and v refers to the coefficient at the bridging
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vertex which is becoming attached to points x, x' or y,y’. One’s first

reaction is to expect v(® to be zero in ¢i® and ¢59. Indeed, v doesn’t
even appear in Table I. Bult we are really concerned with the nature of ¢
and ¢; in the limit that H’ goes to zero, and so equation 9 is only useful
in the context of H'x not being exacily zero, hence v{%; or v(9; not
necessarily being exactly zero. There are various ways to satisfy Equation

9. Some of them are:

n
(=]

Case 1. wvi® = ;@

Case 2. =@ + x@ = 0, i@ = Q

Case 3. xi® + x(@ = x(0 + x'y@ = 0

Case 4. xi(® + x\@ = xy04x’(0=(], v = —v;@=Q

Case 1 corresponds to the situation where neither of the eigenlevels is
influenced by the perturbation. This implies that, in each eigenlevel,
sites being bridged are "nonbonding” with respect to the bridging vertex,

i.e., that

xn® + x'@ = 0 if w@® = 0,

and similarly for j bridging. This reveals that Case 3 is identical to
Case 1. Case 2 corresponds to a situation where only one of the two
eigenlevels is unperturbed by the bridging vertex. Case 4 corresponds to a
situation where the degenerate levels are perturbed in opposite
directions.

Case 2 is satisfied by the degenerate eigenvectors in Table 1 for the

perturbation H'y, since the sum of coefficients in one of the eigenvectors
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over the y points is zero. Thus, we anticipate that Graph 8 will continue
to possess one eigenvalue at £z -1.000, and this furns oul to be true.

The proper zeroth-order eigenvectors for H'x appear in Table II.
Again, Case 2 is the one which is satisfied, which is necessary since the
result of H’x must be the same as H’y if the new molecules are to be
isospectral, and we have seen that only one of the degenerale eigenvalues
is shifted by H'y.

The absolute sum rule is now satisfied since, from Tables I and II

and Equation 7:

[0.364-0.354 + 0.401 + 0.668| = [0.000 + 0.000 + 0.535 + 0.535] (10)

It even holds for each eigenvector individually since the absolute sum of
the first pair of coefficients on the left agrees with that for the first
pair on the right, and likewise for the second pairs.

Thus, isospectiral pairs display the same coefficient relationships as
do pairs of points related by symmetry, just as do isospectral points with
symmetrical points (with one difference: isospectral pairs, when separated
and compared as individual points, need not retain the isospectral
relation.) This means that we can look for and prove various relationships
concerning isospectral points or pairs by appeal to symmetric analogs. In
other words, isospectral poinis can be regarded as being related by a kind
of "hidden symmetry." It results, as Randic?* has shown, from the fact that
isospeciral points are equally connected to all other poinis in their
graphs, as measured by self-returning walks. Symmetrical peoints are
obviously equally connected; isospectral points are also equally

connected, but not so obvicusly. Symmetric pairs are equally connected
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individually and, hence, in concert. Isospeciral pairs are equally
connected in concert, but not necessarily individually. Since it is the
degree of connectedness which is the fundamental property governing
eigenvalues, we see that symmetrically related poinis or pairs of points
are a subset of the sel of points equally connected to their graphs.
(Before moving to the next point, we should note that Equation 10 holds
with or without the absolute value signs, so after all, there is no
eigenvector for Graph 6 that disobeys the more restrictive sum-rule of
D’Amato et al.’®* However, other examples exist where the more restrictive
sum rule fails. One such case appears in Table III of D’Amato et al.®® for
£=1.000. It is possible to show, from perturbative arguments, that
equivalent points a and a’ must disagree in coefficient sign in at least
one eigenvector, or else that there must be a degeneracy so that different
zeroth-order eigenvectors can apply to different perturbations. For if
this were not the case, and we perturbed at site a, corrections made to
each eigenvector at points a and a’ would be identical. But we know that
this is not the familiar result. The eigenvectors of the new graph are
different in value at the points a and a’. The system is able to tell
which site is being perturbed and which is not and to respond differently
at the two sites. But it cannot do so unless at least one eigenvector is

different at a and a’.)

V. IDENTICAL POINTS AND EQUIVALENT POINTS

We see that there is a close connection between substituting serially

at symmetrically equivalent points, as in 11-13, and substituting serially

at isospectral points, as in 1-3. In each kind of case, all of the



eigenvalues and absolute eigenvector coefficients at the two points are
identical so that, to infinite order in perturbation theory, the points
are equivalent.

Now we come to a subtle but important observation. In the case of
symmetiric substitutions, we produce identical graphs, like 12 and 13.
This means that the added vertex, ¢, is identicael in 12 and 13,

Likewise for c in 15a and 15b. However, if a vertex is serially

substituted to the isospectral points in 1, nonidentical graphs result and
the added vertex is not identical in the two new graphs. Likewise, v in 7
is not identical to v in 8. However, even though these added vertices are
not identical, they are equivalent. To see this, we reverse our point of
view and consider 6=+7 to be a perturbation of v by points x and x’ of 6.
The resulting eigenvector coefficients of v in 7 are determined by
absolute sums of coefficients at x and x’, the coefficient at v,

eigenvalues of 6 and of v. The process 6+8 differs only in that the
absolute suma of coefficients for y and y’ replace these for x and x’. But
these absolute sums are the same, so the resulting coefficients for v in 8
must have the same absolute values as those for v in 7. Since the
eigenvalues for 7 and 8 are also identical, it follows that v in 7 and v

in 8 are equivalent, hence unlinked isospectral points, (or substitution
partners). Thie proves one of the conjectures of D’Amato et al.!®

A similar argument holds for the isospectral poinis themselves. That
is, b of 12 is identical to b’ of 13, so the open-square vertex in 2 is
equivalent to that in 3, which means that they are unlinked isospeciral
sites. Likewise, the unused isospectral points, b’ in 12 and b in 13, are
identical, and so the solid-square points in 2 and 3 are equivalent. These

reciprocal equivalence rules were pointed out by Herndon and Ellzey.l3



VI. GROUPS OF POINTS

We have argued above that points which become identical in
symmetric-substitution cases become egquivalent in isospeciral-substitution
cases. This can be extended to groups of points: Whereas a, b in 15a are
identical to a’, b’ in 15b, x, x' in 7 are equivalent to y, ¥’ in 8. In
other words, isospeciral (equivalent) pairs which have been directly
perturbed by bridging remain isospectral (equivalent) in the new
molecules. The isospectral pairs not directly perturbed behave similarly:
a’, b’ in 15a are identical to a, b in 15b, y, ¥’ in 7 are equivalent to
x, x’ in 8. Finally, all the remaining points (spectator points)
constitute a group which is identical for symmetric cases, equivalent for
isospectral cases. Thus, the unlabeled poinis in 7 and 8 are equivalent
pairs, or unlinked isospectral pairs.

As a result of the above observations we see that, when two
isospectral graphs are created from an initial graph by serial
substitution, every point in each graph belongs to a group which
equivalent to a group in the other graph. Since combinations of equivalent
groups remain equivalent, it follows that the group of all points in one
graph is equivalent to all the points in the other.

We have been discussing two kinds of equivalent point or group of
points--those equivalent by symmetry (hence also by connectivity) and
those equivalent by connectivity but not by symmetry. We will henceforth
use the term symequivalent for the first class and conequivalent for the

second. Conequivalent points are isospectral points.



VIl. SOME EXAMPLES

Consider 6. Bridging x,x’ poinis and y,y’ points serially gives
isospectral graphs 7 and 8. The bridging vertices are labeled v.

1. The sites v are conequivalent (hence unlinked isospeciral points):

"

16 17

2. The pair y, y' in 7 is conequivalent with the pair x,x’ in 8 (hence

unlinked isospectral pairs):

Y
= x
x®
18

19

{Randic has pointed out (personal communication) that, if the connection

is made by a simple bridging vertex, the resuiting graphs are identical.]
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3. The pair x, x’ in 7 is conequivaleni with the pair y, y’ in 8:

(11}
~

20 21

4. The spectator points, unlabeled in 7 and 8 are conequivalent pairs:

e

22 23
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5. Any combination of conequivalent groups retains conequivalence:
24 25
26

27

The fact that 7 and 8 possess symmetry means that there are some
equivalences present within the groups mentioned above. Clearly, there are
iwo locations in each graph that could be labeled v, for instance. This
symequivalence allows separation of the spectator pair into individual
equivalent points in this pair of graphs. This means that each of the

unlabeled points in 6 is individually an unrestricted substitution point.



VIIi. PRESERVATION OF EQUIVALENCE

Where do linked conequivalent points or groups of points like those in
1 or 6 "come from?" We find that they are sometimes points which are
symequivalent in a graph produced by annihilation of an unrestricted
substitution point.?® For example, removal of the solid-circle vertex in 1

gives Graph 28 in which the open-circle vertices are symequivalent. In

d 2 E] ’
- B v g =
= o = =

28

other words, linking points a and ¢’ of 28 with a new vertex preserves ihe
equivalence of b, b’, but not that of a with a’ or ¢ with ¢’. One might
guess that it is simply the fact that the set b,b’ is the only equivalent

set not directly involved in the perturbation that is responsible, but

this is not correct. Adding two more points to form a nine~point chain
does not produce a second pair of conequivalent points after the analogous
substitution. In fact, no conequivalent points survive in that case.

Detailed consideration of perturbation terms for the transformation of 28

to 1 (see Appendix) reveals that b,b’ equivalence is preserved because 28
has a central point bridging two odd~membered subchains, because the
linkage beiween a and c’ is between points which are symequivalent to
vertices a and ¢ which are in turn symequivalent within the subchains, and
because b,b’ are in the center of the subchains. These factors combine to
prevent the perturbational mixing of eigenvectors from changing the
absolute coefficients at b differently from those at b’, (Since none of

these factors involves the eigenvalues or coefficients for the bridging



vertex, bridging vertex .—®can be used, which means that the vertex is
an unrestricted substitution point.)

Recognizing these faclors enables us to produce new cases. The
next-larger linear graph from which we can build in the analogous manner

is 29. We expect points ¢ and ¢’ to remain equivalent for cases where

29
a new vertex bridges a,e’ or b,d’ (or both at once). Thus, the open
circles in 30 and 31 are conequivalent, or isospectiral points. The solid

circles are unrestricted substitution points.

30 31

The relation of isospectral (conequivalent) pairs to symequivalent

peirs ia likewise of interest. Consider 32. Clearly the pair of

b’ a

c
&

32
points a,b is symequivalent to a’,b’, and pair a,b’' is symequivalent to
a'b, If 32 is bridged at a,b, we obtain 6, so we know that equivalence

between a,b’ and a',b is retained. If we bridge 32 between a and b’, we
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obtain 33. This graph is known to have isospeciral pairs x,x’ and y,y’

33

which means that the equivalence retained in this case is that between a,b
and a’,b’. In each case we retain equivalence between pairs wherein one
point is involved in bridging and the other is not.

A perturbational analysis of 32 (Appendix) reveals the conditions
which give rise to preservation of pair equivalence. The results are
rather simple and are best explained using examples. Consider graph 32.
The fact that certain symequivalent paire retain equivalence when that
graph is perturbed by linking a,b or a,b’ rests on the facts that (1) a
symmeiry plane exists which cuts through a vertex (c) but does not bisect
any edges, and (2) the points a and b are symequivalent in "their part" of
the graph (all points outside and on one side of the reflection plane).
(This means, of course, that a’,b’ must also be symequivalent in their
part.) Consider graph 11. Linking a,b or a,b’ does not maintain equivalent
pairs. This results from the fact that the relevant symmetry plane bisects
an edge.

Given this rather simple prescription, one can quickly create
innumerable graphs having isospectral pairs of sites. Obviously, any

odd-numbered chain is a candidate. 34 can be linked at
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34
a,c to retain equivalence of at+c’ with c+a’ (see 35). Linking a,c’ retains

equivalence of a+c with a’+c’ (36). But 36 is the same as 1: The bridging

35 36

of 34 to produce 36 simultaneously meets our requirements for making b and
b’ into isospectral points and those for making a,c and a'c’ into
isospectral pairs. Note that bridging a,b of 34 does not work because a
and b are not symequivalent in their "part" of the graph.
Graph 37 is a nonlinear case that meets the stated conditions. The

plane cuis the three unlabeled vertices, and a is symequivalent with b

a’ dja, x y’ xé /
b b’ ’ ! l
: )I :Ix x y

37 38 39
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in_its fragment. As a result, bridging a and b to give 38 leaves the pair
a,b’ equivalent to a’,b, whereas bridging a and b’ to give 39 makes a,b
equivalent to a’,b’. (The bridging vertex is an unrestricted substitution
site in all these cases, as explicitly indicated in 38.)

Graph 33 does not work in the same manner because the symmetry plane

bisects a bond.

IX. CONCLUSIONS

Isospeciral points or groups of points, linked or unlinked, are
equivalent to each other in the same operational manner as points or
groups of points that are equivalent by symmetry; the absolute values of
coefficients (summed over groups) in all eigenvectors, including proper
zeroth-order degenerate cases, are the same and the eigenvalues are the
same. This means that classes of points or groups of points which become
identical in symmetry-substitution cases become equivalent in
isospectrai-substitution cases. I{ appears that the existence of linked
isospectral points or groups of points can sometimes be attributed to

preservation of symmetric equivalence existing in a related graph.
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Appendix
Perturbational Analysis of Preservation of Equivalence

1. Preservation of Equivalence Between Two Sites.

Consider a seven-vertex linear graph, 28, with eigenvectors and
eigenvalues as indicated in Fig. 1. Let the coefficient for vertex
¢’ in eigenvector ¢i be symbolized by c’i. By symmetiry, a is
equivalent to a’, b to b’ and ¢ to ¢’. We have noted earlier that
bridging this graph beiween c and a’, as in 1, destroys the equivalence
of a with a’ and ¢ with ¢’ but does not destroy the equivalence of b
with b’.

When the perturbation due to bridging occurs, the eigenvectors on
the seven original vertices undergo changes which are expressible
entirely in terms of mixing among the original eigenvectors. That is,
the original eigenvector ¢ becomes some new eigenvector, ¢’y which can
be written as ¢'1 = ¢1 + Asds + Akwpx+... (Inclusion of coefficients
from the bridging graph and renormalization would be required for
complete expression of ¢%, but that is not of concern here.)

In order for the vertices b and b’ to remain equivalent, it is
necessary that, for each eigenvector ¢i, any change in the absolute

value of b1 be equalled by the change in absolute value of b’. That is
b + §,,ix“b,| = Ib: + Faghaabl |

There are some features of the eigenvectors in Fig. 1 that can
help in our analysis: Each eigenvector is either symmetric or

antisymmetric for reflection through the central vertex, giving rise to
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the labels S and A in Fig. 1. Since the reflection plane cuts a vertex,
it follows that each antisymmetric eigenvector is symmetric or
antisymmetric within each subchain. (This follows from the analytical
expression for such eigenvector coefficients,’? and is not true for
linear graphs with an even number of centers, where the plane must
bisect an edge.) This symmetry condition is indicated by the subscript

labels 8 and a in Fig. 1.

-1.8478 %W@ S

oho—oOo 1,
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0. 0000 O @ O A,
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-
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-l 47142

l. 9478 O

0

FIGURE 1. Eigenvalues and eigenvectors for the linear seven-vertex
graph. Shaded circles refer to negative coefﬁcients_.
Symbols at right indicate whether the eigenvector is
symmetric (S) or antisymmetric (A) for reflection through
the central vertex. The subscript refers to symmetry for
reflection within each of the two subgraphs (i.e., within
the three left-most or three right-most verticea.)
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The perturbation operator for bridging ¢ and a’ by vertex v is
H’ = 8cv + 8a’v . This leads to mixing coefficients involving sums of
products of the form (ci + a’i)(c; + a’;). It follows immediately that
any eigenvector having ci = -a’t will not be affected by the
perturbation and will not mix in with any eigenvectors that are
affected. This means that the As. eigenvectors in Fig. 1 are isolated
from the perturbation and that their two corresponding eigenvalues will
continue to be eigenvalues for the new graph 1.

We continue by considering the remaining five eigenvectors. Suppose
¢ and ¢; are both symmetric. Then bi=b’, b;=b’j, and bi+Ab; =
b’i+Ab’;, so the equivalence condition is met by mixing two symmetric
eigenvectors. If ¢i or ¢; is antisymmetric (of the Aa type), then
b=b’=0, so nothing happens to upset the equivalence condition.

It follows that we can guarantee equivalence preservation between
sites if we have eigenvectors that meet all these symmetry conditions
and if we bridge between the appropriate vertices. Note that bridging
between a and ¢ does not preserve b,b’ equivalence. This results
because now the As eigenvectors participate, and these eigenvectors
have opposite signs at b and b’, causing the equivalence condition to
be lost. Note also that the Aa eigenvector fails to disrupt b,b’
equivalence only because it has zero coefficients at b and b’. This
happens only because b and b’ are central atoms in an odd-numbered

subchain.

Preservation of Equivalence between Two Pairs of Sites
Consider a five-vertex linear graph, 32, with eigenfunctions and

eigenvalues indicated in Fig. 2. We have noted earlier that there are
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FIGURE 2. Eigenvalues, eigenvectors and symmetry symbols for the
linear five-vertex graph. See Fig. 1 for definitions.

two ways to bridge this graph, a to b or a to b’, and end up with a new
graph having isospectral pairs of vertices (6 and 33 respectively).
Before bridging, we have the following equivalent vertices: a with a’,
b with b’, a+b with a’+b’, a+b’ with a’+b.
A. Bridging a to b’
Only the equivalence a+b with a’+b’ survives. Therefore, we need
to understand why the following equivalence condition is met in a to b’

bridging:
laj+bi + £ Aj,i(as+bs)I=la’+b’+L ks, 1(a’+b’) |
3 #i L 34

As seen in part I, an As eigenvector is uninfluenced by the a-b’
perturbation. (This requires symmetry in the subchains, such that

laj=jb].) Its eigenvalue survives as one of the eigenvalues of 6.
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The remaining eigenvectors can mix in various symmetry combinations. If
¢i and ¢; are both symmetric, then ai = a’, bi=b’, a;=a’j, b;=b’;,

and the equivalence condition is met. If ¢i and ¢; are both Aa (only
possible with a graph larger than 32), then ai=-a’i=-bi=b’, ditto for
J, and both sides of the equivalence condition vanish. (Even without
the equality between |ai| and |bil, the equivalence condition would be
met.) If ¢ is S and ¢; is Aa, then ai=a’i, bi=b%, ay=-a’j=-bj=b;. Then
astbj=a’j+b’;=0 and the equivalence condition is satisfied. (Without
the equality between |as] and |bsf, the condition would not be
satisfied.)

B. Bridging a to b

Only the equivalence a+b with a’+b’ survives. The analysis is
similar to part A, except now it is the Aa eigenvectors that cannot
participate.

These analyses indicate that we can preserve pair equivalences if
we choose starting graphs which can be symmetrically sliced by a plane
into subgraphs (without bisecting edges) and if the pairs of vertices
are symmetrically disposed within these subgraphs. Labeling these pairs
a,b in one subgraph and a’,b’ in the other, bridging a-b keeps

equivalent a+b’ to a’+b. Bridging a-b’ keeps equivalent a+b to a'+b'.
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