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Abstract: Different types of formulas for the number of Kekulé@ structures
of benzenoid classes are summarized. Cases are treated where a new Lype is
encountered, containing exponential functions of binomial coefficients.

The enumeration problems are solved in terms of recurrence relations, and
in some cases also explicit formulas. Benzenoid classes with repeated units
are considered, containing condensed parallelograms or parallelograms with-
out corners.

1. INTRODUCTION

The enumeration of Kekulé structures for classes of benzenoids1 has
been a subject of many investigations. These studies are not only interes-
ting in organic and physical chemistry, but also from a purely mathematical
viewpoint. Different types of formulas for the number of Kekulé structures

(K) have been derived.

(1) Binomial coefficients. Gordon and Davison2 identified the number of
Kekulé structures for a parallelogram-shaped benzenoid with a binomial
coefficient, They also reported formulas for hexagon, and chevron-shaped
benzenoids in terms of binomial coefficients. A great number of such X
formulas have been derived later.3-8 Many of them contain only one para-

meter (say n), and are consequently equivalent to polynomials in 7.

(2) Repeated units. Classes of benzenoids with repeated identical units

s 9-12 4 p 5 i
have been studied. Recurrence relations, and in some cases explicit
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K formulas have been achieved for such systems. These explicit formulas are
of a substantially different kind than those of the above paragraph:

(a) FExpomential functions of irrational rumbers. The leading example
is Binet's formula for Fibonacci numbers, which is relevant for the X num-
bers of the well-known class of single zig-zag chains.3’13 More advanced

Bl Balaban and Tomescu12 were the

examples are found in later works.
first who produced a formula of this type with an arbitrary parameter in
the irrational numbers.

(b) Exponential functton of integer. The cited work of Gutman . con-
tains two benzenoid classes where the K formula is the exponential of an
integer, viz. 3, occasionally multiplied by 2; cf. Fig. 1. This type of X
formulas seems to occur very rarely. More precisely, it is so far the only
known example, if we disregard the (trivial) cases of essentially discon—

nected benzenocids (see below).

(3) Present work. Here we encounter for the first time non-trivial benze—
noid classes for which the X formulas contain exponentials of binomial
coefficients. This is, in other words, a combination of the types under
paragraphs (1) and (2) above. The present study throws some light on
Gutman‘s11 example (Fig. 1). Firstly, we obtain a straightforward gene-

ralization of Gutman's formulas. The integer 3 appears to be the binomial

coefficient \2::1) for m=2. Secondly, we perform a further generalization,

in which also exponentials of irrational numbers are invocked. The first

.
2
1
Fig. 1. Two benzenoid
classes from 1. Gutman,
K=3N

Match 17, 3 (1985).
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example is found to represent an interesting singularity where the irratio-

nal numbers reduce to integers or cancel.

Soe

K=10

K=100

Fig. 2. Some benzenoids

with decadic X numbers:
K=1000 one parallelogram (upper-
left), otherwise essen-
tially disconnected
benzenoids.

K=1000

(4) Eesentially disconnected benzenoids. Exponentials of integers or bino-
mial coefficients are also achieved in a more trivial manner by essentially

disconnected benzenoids. The first formula of this type, viz. (n+1)”, was

given by Yen.3 It applies to prolate rectangles;8 one example (n=9, N=3) is

depicted in Fig. 2. Slightly more elevated (but still trivial) cases lead
(k4m\V

U\m

were chosen for the sake of curiosity.

. Some examples are included in Fig. 2, where decadic X numbers

2. CONDENSED RHOMBS AND A RELATED CLASS

2.1. Definitions

Consider a number (N) of rhombic benzenoids, which are special cases
of parallelograms, L(m,m). Let them be condensed in a way that two neigh-
bours overlap with one ring as shown in Fig. 3. The class may be designated
<L(m,m)>w. Let the corresponding number of Kekul& structures be denoted

k{<uomm>"} = 5 ()

A related class is obtained by deleting cne row of m rings from an end

rhomb (see Fig. 3). Let its X number be given by

K[<L(m.m)>N-1<L(m—1, m)>} = SN' (2)
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Fig. 3. Condensed
rhombs and a rela-
I = M ted class.
K Sy K SN

2.2. K formulas
. . 14 ’
By well-known enumeration methods for Kekulé& structures one obtains

immediately the basic formula

5, = 25 (3

which connects the X numbers of the two classes (Fig. 3). A formula of a

recursive nature reads

= 1 A\l -
Sy =28 5,1 ;s ¥>1 (4)

From equns. (3) and (4):

W v
Sy' =8

’ EEE
1 Sph e Sy = Ggg B L 5

These are the recurrence relations for the two benzenoid classes in ques-—
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tion. For the degenerate case of ¥=0 one has, in consistence with the above
equations,
SO‘ =1, S, =2 (6)

As initial conditions to eqns. (5} we have:

e (T). m () 2)

Consequently

L [2m-1)2 B 2m-1)\2

.52 _(m)’ 52-2("‘) (8)
and in general:

o v _ [2n-1YV _ (Zm—l)N

W S\m ) W R (9

which holds for all ¥ > 0.
The formulas of GutmanIl - see Fig. 1 - are special cases of eqns.

(9) for m=1,

2.3. Decadic K numbers

With m=3 eqns. (9) contain powers of 10. That gives rise to a non—
trivial series of benzenoids with decadic K numbers, as shown in Fig. 4.
This is of course only a modest contribution to the difficult problem: Pro-
duce all possible benzenoids (or their number)} with a given number (X) of
Kekulé structures. Fig. 4 includes two more examples with X=1000, of which
one is essentially disconnected, and the other (the bottom drawing) not.
The examples are by no means supposed to be exhaustive,

3. CONDENSED PARALLELOGRAMS AND RELATED CLASSES: PARALLEL CONDENSATION

3.1. Definitions

The generalization of the class of condensed rhombs (see preceding)
section) to condensed parallelograms, L(k,n) where k # m, is not a trivial
matter for several reasons. (a) In the present context a condensation of
two parallelograms may be realized in two ways, say parallel and anti-
parallel. The former kind is the subject of the present section, while the
latter type of condensation is treated, more briefly, in the subsequent
section. (b) The solution for k=m appears to be a kind of a singularity.

Figure 5 shows the definition of three classes. Their K numbers are:
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(i) kl<wk,mys’y = By (10)
(ii)  kl<nge,m> lnk-1, my>) = pN("’ (1)
(i) x<wle,m>¥ Lk, n-1)5) = pﬂ(’” (12)

In the modified classes (ii) and (iii) the parameters kX and m, respective-
ly, have been decreased by unity by deleting the appropriate rows from an
end parallelogram.

3.2. Recurrence formula

The following equation holds.

- p k) (m)
Fy = By + Py (13)

It corresponds to eqn. (3) for the special case of k=m; in that case

p o O

f =Py v k=m (14)

As recursive formulas we now have

53

K=1000
K=1000

K=1000

Fig. 4. Some benzenoids
with decadic K numbers
(see also Fig. 2).
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(k) _ 5 m)
K =By K =Py

Fig. 5. Condensed parallelo-
grams (i), and two related
classes, (ii) and (iii):
parallel condensation.

> - p (K) (m) m) , (k) |
B B g, W T, M g > (15)

(m) ,, (k) |
5%y Egg YEY B B >4 €163
Here eqn. (15) corresponds to (4). In this generalized case (k # m) a
simple form like (5) does not exist. Another term, e.g. PN—Z' in addition
to PN and pN—I has to be invoked. From eqns. (13), (15) and (16) a recur-—
rence formula for P is obtained as follows.

n
o (), b (), () (my (O
_ &g 2 9° 1 9
LT S © o m w2t
Py =Ry BBy

k#m WN>2 (1D
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Notice that this equation is not valid for k=m; both numerators and denomi-
nators vanish in that case.

Similarly to eqn. (6) we have

e . o ) -
Py =B, =1, Py =2 (18)
Furthermore
(k) _ [k+m-1Y m) _ (k+m-1
L D I Py ‘(m—l) (12
and
_ (k+m
P1=\m (20)

(m)

The quantities Pl(k) and P2 are obtainable from the following

recursive equations.

(k) _ (k+m=2 (m)  (kem-2 )
Fy " = ( m ) Fy-1 * ( m-1 ) Py ’ B &)
m) _ (k+m-2 (m) k+m=2 (k) .
By " ( m-1 ) L ( n-2 ) Pm1 Kz @2
The result is:
(k) _ (kFm=1\(k+m=-2 kAm-1\(k+m-2
p,® = () - (G @
(m) _ [(k+m=1\(k+m-2 k4m=1\{ k+m-2
7" = (n o) + Gt Xom’) 9
One has also, in consistence with the given equations,
k+m=1\{k+m-1
s ()

With the aid of eqms. (19), (23) and (24) the recurrence formula (17)

was rendered into the form

- (kam=2\ _1 (k+m=1 .
" \Umm /[Zpﬂ'l K\ m )Pm-z]’ kifm, N>2 (26)

A more profound analysis shows that the same recurrence relation also
applies to Pm(k) and PN(m), but the initial conditions are different. The
relations for these quantities were not pursued further, but it was con-
centrated upon P,, for which an explicit equation was derived (see next

paragraph) .
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Numerical example, which pertains to Fig. 5 (k=4, m=3).

(N , (k) _ (6 _ (m) _ (6 _
py= (D) =35, 2, ® = (8) = 20, p ™ - ()= 15

[ By = BOEL. . — BOR. . N> 2 l
(k) (m)
N PIV PN 17'.‘i
0 2 1 1
1 35 20 15
2 600 350 250
3 10250 6000 4250

3.3. Expliecit formula

An explicit formula for PN was worked out by standard methods from the
recurrence relation (26) along with the initial conditions given by (18) and
(20). It was attained at the form:

N
-2\ x o % 8
e (k-rmlz) { L4 kG- + mem 1)][1 N = 1)]
A 24flm(&-1) (m-1) km
N
4 I:l kD) +mm=1) || / (k—l)(m~1)j| (27)
2y km(k-1) (m-1) km
Numerical example (K=4, m=3):

Py = %[(a + 33D 0 + sy + @ - 3yWD 0 - 5-\/5)”]

It is noteworthy that eqn. (27) also is valid for k=m. In that case:
_ (2N (-t famm Y
oy (A 2@ (Y e a0

in consistence with eqn. (9). A more detailed analysis with relevance to
Gutman'sll example - see Fig. 1 - seems to be warranted. It was foreshadowed

in the introduction (Section 1). In this case k=m=2. For k=2 eqn. (27) takes
the form:

oo |y s memn) + 2] [2n « Vomgneny |7
¥ 24/ Zmn-1) 2

l’v
. |1 - m(m-1) + 2] [Zw = Zm(m—l)] s k=2 (29)
[ 2\/2m(m—1) 2
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If we now insert m=2 the second term on the right-hand side of eqn. (29)
cancels, while the first term becomes (1+1)3V,

4. CONDENSED PARALLELOGRAMS AND RELATED CLASSES: ANTI-PARALLEL
CONDENSATION

4.1. Definitions

Figure 6 shows a class of condensed parallelograms, which like the
one at the left-hand side of Fig. 5, could be designated <L(k,m)>~. We
shall not elaborate this type of notation in order to distinguish between
the different cases. The two classes differ, indeed: in two neighbouring
parallelograms of the present case (Fig. 6) the k-rows and m-rows are not
mutually parallel. This condensation, executed in a zig-zag manner, is
referred to as anti-parallel. The figure includes two related classes ob-
tained again by modifications of one of the end parallelograms. Also the

notation for the K numbers is specified in the figure.

Fig. 6. Condensed parallelo-
grams and two related classes:
anti-parallel condensation.
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4.2. Results of the analysis
One has

(kY _ , (m
4 =

QO =L i QO =2

as in eqn. (18). Evidently one has also
&y _ ., {m) _ , (m)
I i 1

and

(30)

(31)

(32)

The relevant expressions (in terms of k and m) are given by eqns. (19) and

(20). For N=2 it was found:

(ky _ (k+m—1)(k+m—2) . (km—1)(k+m-2)
QZ - m m m=1 m=-1

2

m m=1

Furthermore,

_ [(km-1)2 k4m-1\2
O G I

(m) _ (kem-1) k+m-2) o (kﬂn—l k+m—2)
-\ m=1 m=2

The following recurrence relation holds for QN'

(33)

(34)

(35)

_ (k+m-2 k-1  m-1 1 (k+m-1 .
Qﬂ_(m—l)[(T+T)QN—1+’E(M)QN._Z]s ktm, N>2
(36)
It is equivalent to:
- | (km-2) (k+m—2) 1 (k+m~1 k+m—2) .
W= [\ m )t \m2 )1 B Am1 )2 s
ktm, W>2 (37)
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Numerical example, which pertains to Fig. 6 (k=4, m=3).

| QW = ISQN_I + SOQN,_2 H N>2
(k) m
N Qy 3y Qy
0 2 1 1
1 35 20 15
2 625 350 275
3 11125 6250 4875

4.3. Connection between PN and QN numbers for N=1 and 2

Equations (19), (25) and (35) give

= () (m) . (k)42 (m) .2
g, =28 Y p W0, &, = Tz "3« Ty ™3 (38)
Hence

2
2 7 _ {k+m) (39)

- (k) (m),2 _ ok
By = B g Nt w8 s g% =10

The same result is obtained on combining the two recurrence relations (26)
and (37) with N=2. Then

B+ @y = [(JH:_Z) + 2 (";TIZ) ¥ (kr:f;z)]’ﬁ (40)

which is consistent with eqn. (39).

5. CONDENSED RHOMBS WITHOUT CORNERS

An analysis like the one of Section 2 was carried out for rhombic
benzenoids without corners; cf. the left-hand part (i) of Fig. 7. A corner
is here defined as a ring with three free edges (i.e. on the perimeter).
With the notation of Fig. 7 (I for the number of Kekulé structures) it was
attained at

o | fam-1y _ oL f2vn) _ ,
o [\ m )" T T [ 2\m) " T NEd (4L
and explicitly:
_ o [y _ ¥
T, = 2[ w ) 1] (42)

The depicted examples (Fig. 7) pertain to m=4. Cousider instead m=3. Then
one unit, wviz. L(3,3) without corners, corresponds to two units of con-
densed pyrenes, L(2,2); cf. Fig. 1. Equation (42) with m=3 gives
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(i) (ii) (iii)

I y 2 34 t 1
K=7 . -
W =10y =Ty

Fig. 7. Condensed rhombs without corners (i), and con-
densed rhombs without one corner each (ii), {(iii).

N
By = 248" = 248

The result is indeed identical with the appropriate K formula of Fig. 1,
if ¥ is replaced by 2N.

Figure 7 includes two classes, where the rhombs have been deprived
of only one corner each. In one case (ii) the indentations after deleted
corners are on the same side, while in the other (iii) they alternate in a
zig-zag manner. The figure includes the symbols used to designate numbers

of Kekulé& structures. In these cases, (ii) and (ii1), it appears again
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that the recurrence formulas consist of three terms, e.g. with subscripts

N, N-1 and N-2. It was found:

A e -] Co)lE) - Qo 222w

and

AT -] - G0 - P s w22 | o

The initial conditions are:

U =V =2 (45)

and

u =

1 1 (46)

n
™~
—
S
I
-
n
—
=]
e
I
-

Hence for N=2:

o (o - [7)-1]

m m

v, =2 (2”;_1) [(2’;';1) - 1] (48)

There is a connection between the numbers UN and VN for N=1 and 2 (compare

with the treatment in Section 4.3). It was found
22 |fom 2
U2+ V2 = U!l = V1 A[(m)_ 1] (49)
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