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Abstract: The number of Kekulé structures (K) was computed for all benze-
noids up to % (the number of hexagons) = 7. The lower limit of X, viz.

K .
min
all normal (also Kekul&an pericondensed which are not essentially discon-

= h+l was recently proved to be valid for not only catacondensed, but

nected) benzenoids. (The proof is not conducted here.) The upper limit of
K in catacondensed benzenoids is improved. It is inferred that it also
applies to all normal benzenoids. All normal benzenoids with ¥ = 2, 3, 4,

5, 6, 7, 8 and 9 are depicted.

INTRCDUCTION

Much work has been done on the number of Kekulé& structu-
res (K) for different classes of benzenoid hydrocarbons, espe-
cially during the last years. Therefore it seems timely to
offer some thoughts to the distribution of K numbers for benze-
noids with different numbers of hexagons (k) in more general
terms.

It is adherred to a previous definition of benzenoids,l
which excludes hexahelicene and its derivatives, as well as
circulenes. By "normal" benzenoids we refer to (a) all cata-
condensed systems (which are Kekuléanz) and (b) "normal peri-
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condensed" systems, i.e. Kekuléans without fixed bonds. A fixed
(or localized) bond is present when a given edge in a benzenoid
has the same character (single or double) in all Kekul& struc-
tures. Benzenoids not referred to as "normal" are pgricondensed
and (a) essentially disconnected (with fixed bonds) ™'  or (b)
non-Kekuléans.

The present work contains a number of empirical findings
about benzenoids and their number of Kekulé structures. More
general rules are tentatively put forward with a varying degree
of confidence. Other results are deduced in a more stringent
way. 5
The basic definition of benzenoids™ will not prevent us

from including some considerations of helicenes.

PATTERNS OF K DISTRIBUTION

Figure 1 shows the distributions of X numbers for % = 3
4, 5, 6 and 7. The patterns are seen to be very irregular, pos-
sessing sharp peaks between the minimum and maximum X values.
The curves are damped when X numbers of isoarithmic5 structures
are counted only once; see the dotted curves. Isoarithmic ben-
zenoids differ only in the way the kinks of angular annelation
go in single chains, either isclated or annelated to a pericon-
densed system.

MINIMUM AND MAXIMUM X NUMBERS

Previous work

Of particular interest are the studies of the minimum and
maxlmu? X numbers for a given 4, say Kmin(h) and Kmax(h).
Gutman™ has reported a significant result in this area. He de-
monstrated in a stringent way that any catacondensed benzenoid

has a number of Kekulé structures (K) within the limits
r1<r< 2?41 o

The lower limit of (1) is realized for linear polyacenes,
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say L(2). We may write

Kpin@® = K{L®)) = A+l 2

The solution for the lower limit is therefore definite.

" h=3 K=4,5

N
‘[ 7\ h=4 5<k<9
e

Ia

N = number of normal benzenoids

¢N

10 h=1

5

L
rrr T T
5 ' '10

Fig. 1. Number of normal benzenoids as a function of K for h=3,4,5,6,7.
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The upper limit of (1) is realized for 2 = 1, 2, 3 and 4.
With increasing % values this limit becomes more and more over-
estimated.

CATACONDENSED BENZENQIDS

Structures with maximum K

It is a general experience and supported by exact formu-
las, that (lcosely speaking) a high XK number for a catacon-
densed benzenoid is conditioned by (a) many branching hexagons
in the first place and secondly (b) many angularly annelated
hexagons rather than linearly. These criteria are not suffi-
cient to depict with confidence a catacondensed benzenoid with
a given A which has the maximum ¥ value. Three mistakes are
found in Gutman's6 table. They do not change the conclusions of
this pioneering work. Figure 2 shows catacondensed benzenoids
with high K numbers in relation to the number of hexagons (4).
All Gutman6 X numbers emerge when each benzencid is generated
by adding a hexagon to the preceding one (see the top row and
left column of Fig. 2). The %4 values are written into the added
hexagons. But this principle is not always sound for % > 6, as
shown by the present examples, which are supposed to give the
real XK maxima. The framed structures (k#=11l) are isoarithmic.
Table 1 includes the three corrections (k= 7, 9, 1l1) of
Gutman's6 numbers.

- 6
Table 1. Maximal K values and upper bounds from Gutman ; corrected and
extended.

P maximal upper % maximal upper
K value bound (1) K value bound (1)
1 2 2 7 41 65
2 3 3 8 66 129
3 5 5 9 110 257
& 9 9 10 189 513
5 14 17 11 302 (305) 1025
6 24 33 12 492 (510) 2049




= g =

K=296

K=302

K=302

Fig. 2. Catacondensed benzenoids with A=1,...,
and the maximal or almost maximal X numbers.
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At this stage we take into account structures with over-
lapping edges, viz. derivatives of hexahelicene and heptaheli-
cene (but not a larger degree of overlapping, e.g. octaheli-
cene). They are not genuine benzenoids.™ Such a non-genuine
benzenoid is isocarithmic with the one cof 4=9 (x = 110; Fig. 2);
see Figure 3, where dualist graphs7 are employed. For h=11 the
figure shows four iscarithmic structures with XK = 302, along
with a new one having a slightly larger K number. The presu-
mably maximal X values when overlapping edges are allowed, are
given in parentheses in Table 1. The table is supplemented
with #=12 in consistence with the illustration (Fig. 3). Paren-
thesized K numbers in the figure pertain to structures with

overlapping edges.

h=9 ; =10
k=110 (K=110) -
h=11 )-}_z__ : ; B=11
K=302 X=102
(K=302) (K=302)
}ﬁ* h=12
K=492 (K=492)
(K=492)
(K=510)

Fig. 3. Catacondensed benzenoids with 2 = 9, 10, 113 12 and the maximal or
almost maximal X numbers. Helicene derivatives are included.
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All-benzenoid syectems

It is observed that all-benzenoid systems8 (indicated by circles in
the full rings) are among the benzenoids with maximum K. In the above
examples it is seen to occur whenmever possible, namely for # = 1 + 32,
where £ = 0, 1, 2 and 3. It is also seen (cf. A=7; Fig. 2) that every cata-
condensed all-benzenoid is not represented. Again those with as many as
possible branching hexagons and angular annelations are preferred. In sup-
plement of this discussion we give the two isocarithmic 4=10 all-benzenoids
with a K number slightly below the maximum, Kmax(lo) = 189, due to one

branching hexagon less:

We believe that the next member of the list, i.e. for 4=13, is the all-ben-
zencid depicted above.

It is tempting to conjecture that (at least if overlapping edges are
allowed), for # = 1 + 37, the structure with maximum X is an all-benzenoid

also when © 25,

Upper bounds of K

The upper bound (1) from Gutmans, viz.

& i 2 e (3)
max e
is consistent with the recurrence formula:

=15 = -2); 4
Koo < 3K (A1) % (he2)5 h>2 (4)

It may be "regionally" imprcved in the following way. The initial condi-

tions K (1) = 2 and K (2) = 3 give exactly eqn. (3). The formula (4)
max max )

may be adapted to other conditions, for instance Kmax(ﬁ) = 33 and Kmax(T)

= 41. In that case the explicit equation reads
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hi—6
+

K oot < 17-2 7 (5)

The numerical values for % up to 12 are shown below.

upper bound upper bound

15.50 11 55]
24 12 1095

A for K (5) A for K (5)
1 w727 7 41
2 “8.06 8 75
3 n9.13 9 143
4 11.25 10 279
5

[

A more significant improvement is achieved by a fresh
approach as outlined in the following. Consider a catacondensed
benzenoid with A hexagons and the maximum number of Kekulé&
structures, Kmax(h). Assume that one end is branched so that
C

the whole benzenoid may be interpreted as C or C,:

17 =2 3

Cy 02;3 Caié
The fragmentation method9 applied to any of these possibilities

gives
Ko = K(-1) + 2((h-3);5 ho>4 (6)

(a) The examples of Fig. 2 for A > 6 show the necessity
to consider a branched end as depicted above. In any case we
are on the safe side as far as the upper limit of Kmax(h) is
concerned because any unbranched configuration, like for ins-

tance C4 and C5, would give a result smaller than (6).

c Cs
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(b) The benzenoids associated with the right-hand side
of egqn. (6) are in general unknown. However, if we substitute
their K numbers by the maximum values, we have certainly

Kmax(h) e Kmax(h-l') * 2Kl:uax(h!-:!); k>4 [€))

Also in this case regional adjustments may be imposed, as is exemplified
in the following table,

upper bound

A for K (7)

1 2

2 3 1 initial

3 5 conditions

4 9

5 15

6 25 24 %

7 43 41 new initial
8 73 66 conditions
9 123 114

10 209 196

11 355 328

12 601 556

A new recurrence relation for the upper bound was

obtained on combining (4) and (7):

Kmax(h) f'Kmax(h_z) + 3Kmax(h—3); ho> o4 (8)

This relation showed to be superior to all the preceding ones;

see Table 2.
By means of Gutman's6 result (1) we derive

he

Koan(®) < 5:2 4 9

This is the best explicit formula found for Kmax when 4 > 4.
Still the recurrence formula (8) is the best result.

Further application of eqn. (8)
Figure 4 shows a continuation of Fig. 3. All the depicted structures

for 2 >13 have overlapping edges. The X values for each A are the maximal
values which were found. The subsequent application of eqn. (8) supports



Table 2. Maximal X values and upper bounds for catacondensed benzenoids.
Parenthesized values pertain to helicenes.

% maximal [‘upper upper
K value bound (8) bound (9)
1 2 2 Vb 6
2 3 3 initial 5.25
3 5 5 conditions 6.5
4 9 9 9
5 14 14 14
6 24 24 24
7 41 41 44
8 66 66 84
9 110 113 164
10 189 189 324
11 302 (305) 311 644
12 492 (510) 528 1284
=13 k=14
k=863 " (k=863) Cka14253
h=15 h=16
(K=2345) (K=2345)
h=117 (%=3987)
h=18
(K=6416) (K=6416)
41y h=20 (K=10905)
(K=18254) (K=29784)

Fig. 4. Catacondensed benzenoids (mostly helicene derivatives) with A =
13, ... 20, and presumably maximal X values.
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the belief that they may be the absolute maxima. All-benzenoid systems
among the dualist graphs (Figs. 3 and 4) are recognized by the white
circles for full non-terminal hexagons.

All the above equations for upper bounds are also valid when over-
lapping edges are allowed. The below table shows the results from eqn.(8)
along with percentage deviations based on the (not guaranteed) maximal X
values from Figs. 3 and 4.

maximal upper S
h K value (?) bound (8) Deyxation
9 110 113 2,77
10 189 189 0%
11 (305) 31 (v2.0%)
12 (510) 528 (v3.5%)
13 863 878 0 4
14 (1425) 1461 (v2.5%)
15 (2345) 2462 (~5.07)
16 (3987) 4095 (n2.77)
17 (6416) 6845 (6.77)
18 {10905) 11481 {v5.3%)
19 (18254) 19130 (v4 .82)
20 (29784) 32016 (v7.5%)

A graphical representation of these deviations (see below) displays a
steadily, but not monotonously, ascending curve. It has local minima for
every all-benzenoid with 2 > 10, The dotted curve drawn through these
minima is fairly regular and approximately linear.

1\

% deviation .

h
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all-benzenoids

The diagram was supplemented by means of the two next all-benzenoids, for
which the structures depicted on the next page are assumed to give the
maximum X numbers.

For as high 7 values as this the other estimates of upper bounds are
quite out of order. As an example, we have for A=22 from (a) eqn. (7) with
the original initial conditions ¥ = 118113, (b) eqn. (9) K = 1310724, and
(c) from eqn. (1) or (4) K = 2097153.
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hs
22 h=25

(K=84546) (K=386222) (K=386222)

NORMAL BENZENOIDS

A detailed inspection of the normal pericondensed benze-
noids with # = 4, 5, 6 and 7 revealed the following maximal
numbers of Kekulé structures. All of the systems are annelated
pyrenes (or pyrene itself):

h=h Een 6 L
O
5 55 &
, % ©
K=6 K=11 K=20 =31

A higher degree of pericondensation gives lower K values for

"0 &

K=23 K=20 K=19

X5 G 5D

X=18 K=15 K=14

the same #:



= Wl =

On the basis of these considerations, along with all empi-
rical data, it is conjectured that the maximum X number for a
given k2 occurs for a catacondensed benzenoid.

With regard to the minimum X it has recently been proved

10

rigorocusly that A+1 applies not only to the catacondensed, but

to all normal benzenoids.

DISTRIBUTION OF #X

It is of great interest to investigate the number of
benzenoids with a fixed number of Kekulé structures (X). In the
already frequently cited paper6 Gutman says: "It should be inte-
resting to determine all benzenoid hydrocarbons which have 2, 3,
4, 5, 6, 7 and 8 Kekulé structures."

This question may be approached by a representation of
part of the material underlying the diagrams of Fig. 1 the other
way around. In other words we search the distribution of % for

given K values. Table 3 shows the figures up to X=9. Apart from

Table . Number of benzenoids wi th given arn 1Iferent numbers o
ble 3 g K d diff t b f
hexa, gons (;Z) .

Number of hexagons (h)

£ 14 & & & & & # @ e Total
2 1 1
3 il 1
4 1 1
5 1 I 2
6 1 1 4.
7  § 0 ¥ 2
8 2 0 0 1 3 not co?nting
L2 o o i § g it
9 benzenoids
only
1 1 3 6 poss L essentially

disconnected
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the extraordinary bottom line (for essentially disconnected
benzenoids) these figures are all available when (a) having all
K wvalues for the h=7 normal benzenoids at hand and (b) adding
the unity for K(L(8)} = 9. The table really embraces all normal
benfenoids up to k=9. That is understood because of the theo-

0
rem

K > h+l, Kmin(h) = h+l (10)

Consequently

h < K-1, hoa ) = K1 (11)

which gives the upper limit of & for a given K. Hence it is
evident that there will be no figures beyond (above and to the
right of) the diagcnal of unities in Table 3. In general

h < h <Kk-1 (12)
T

for a normal benzenoid. The lower bound ko' or more precisely
hmin(K), is evidently larger than 1 for ¥ > 3. By inspection it
is found, for instance (see Table 3), hmin(K) =4 for K =6, 7,
8 and 9.

The right-hand column of Table 3 answers Gutman's® ques-—
tion (see above) as far as the number of the benzenoids with
2 < K £ B are concerned. The actual structures are shown in
Fig. 5. Table 3 gives furthermore the details for X=9. It con-
firms that the total number of benzenoids is unlimited,6 but

says also that only 4 normal benzenoids with K=9 exist.
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K=2 | K=3 K=4 K=5
o oo oo oy oo
K=6 K=7 K=8

ooy o5

lose

Fig. 5. All normal benze-
noids with ¥ = 2, 3, e D
Abbreviations: a acene
(linear); & bridged;
centrosymmetrical; m mirror-
symmetrical; # normal peri-
condensed; u unsymmetrical.

+ 3 .
Not counting essentially
disconnected benzenoids.
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