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Abstract.- Matrices with positive off-diagonal elements (i.e., essentia-
lly positive matrices) appear in the analysis of systems in which n spe
cies are coupled via a complex scheme of first order reactions. The study
of the spectrum of these matrices permits to infer the behavior of such

systems until they reach their equilibrium states.

Key Words: location of eigenvalues, exponential of a matrix, complex mono

molecular kinetics, butene,
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INTRODUCTION

We will consider a system in which n chemical species are coupled
via first order reactions and confined in a ceonstant volume reac-
tor. Suppose, for example, that we have three chemical species, A, , A

1 2
and A

3 which are connected by the reaction scheme

where k,. 1is supposed to be constant for each pressure and temperature.
We denote by [Ail '[AE] ,[A3] the concentrations of these species at the
time t , and by kij Aj the rate of formation of Ai from Aj . expres

sed in moles per unit of time.

We can assume that the energy balance in the reactions does not per
turb the pressure and temperature conditions, by means of an efficient
thermostatation, if necessary. So, it is reasonable to suppose that the

concentrations vary according to the following linear differential system

ala,]

_—dtl— adad T ["‘11 : 1‘12[“\:2.j ”‘13[1*3] ;
d[AZJ .
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d[ngl
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The numbers ki_j>0 , 121,383 , i=3j , are the nrate constants

of these three composed reactions. They are determined experimentally.

Such a system can be generalized for n chemical species, each of

which is coupled to every other species by chemical reaction to give

d[A] n
_d;’l‘_.. = - j§1 kji[Al] +k12[A2] o +k1n[An] .
afa,] n

dt2 ” km[!-\i] - ;21 ka[AZJ P +k2n[An] ;

The total sum of the concentrations
]+ ] ¢« oo+ [n]
is econstant; that is to say
Ao+ aloe v 3] -c
for all tz0 .

We will use the following notations:

fdx
%, (£) Fra
xw=[alm . 1sisn o xmre=]| . ,ox(e) s= | L i

*n ® dxn '
dT( t) l
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and
n 3
- k k . k
=1 ! 12 in
n
k = ¥ W W owm s k
21 521 j2 2n
{1} K := a
n
k X : s o= ¥ k
3 "
nl n 551 in
Hence, the differential system can be expressed
(2) x = Kx

The problem consists on calculating the limit concentrations of the
equilibrium state (if there exists), which is attained after a sufficien-
tly long time. The sum of the concentrations, C , as well as the rate
constants kij >0, 1<i,j“n , i#j , are supposed to be known. Given the
initial concentrations XI(D) :cl .
studying the asymptotic behaviour of the solution of the problem

e xn(U) :cn , we are interested in

(3) x(0) = ¢ := (¢ .,cn) (T denotes transpose)

Namely, we wish to know if there exists the

lim x(t)

t e

and then:
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1) to compute its value, v , and

2) to establish the relation between v and the initial conditions.

If A is an mxn real matrix, we write A2 0 whenever all the

elements aij of A are 20 , and A>>0 if all the a.j are >0

A>0 means BAz0 and A=z0Q

The matrix K is essentially positive; that is K+sI >0 for all

real s sufficiently large. Then, for all tz¢C

7

z0 ([1] p.196).

Moreover, K 1is an irreducible matrix ([1] p. 27, [3] p- 46) as
all its elements are different from zero. Therefore, ([1] p. 146) it fo-
llows that

el(t
for all t>0 .
It is well known that the soclution of (3) is given by
(4) x(t) = e ¢ &

In consequence, if ¢ >0 then x(t)>> 0 for all t>0 . x(t) is

always in the part of the hyperplane

intercepted by the nonnegative orthant in ®" . see the figure 1 for n=3.
In fact, since the sum of the elements of each column of K is zero it fo-

llows that

d
Eg'(xl(t) g sie 1xn(t)) =0
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for all tz0 ; thus,
xl(t) # o o owdk xn(t)
is constant on 0<St<® , But xl(O) F oo +xn(0) =C , therefore

xl(t) AT A +xn€t] = C

on O0st<w |

x(0)

"
[§1

Fig. 1

We are more interested in the direction of the solution vector x(t)
than in its length. This is the main question for some linear differential

systems which appear in chemical kineiics and pharmacokinetics. See [9] .

The response to the settled questions requires the study of the ma-
trix XK . We shall do it in the next section. Previously, we point out that

an incomplete and partially erroncous study of problem (3) was given in [6]
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This exposition followed closely to [7] Later we shall indicate the aspects

which we criticize of these references.

SPECTRAL PROPERTIES OF ESSENTIALLY POSITIVE MATRICES

We enunciate the following classical result which will be very use-
ful for us. It is a thecorem about the location of the eigenvalues of a ma-

trix.

THEOREM (Gershgorin, 1931) ([4] p. 114). Consider the nxn complex
matriz

\
Big © 28 My ti o By
A = a. « o a,, . a -
i1 i3 jn
a . - B e e a
nl nj nn
Let
T lagl
R, = E a,., [ BT e,
L e
i#j

Then every eigenvalue of A 1lies in at least one of the disks

|z—-ajj] gRj (j=1,...,n)
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The proof is the same as that of ([4] p. 114), taking into account

T "
that A has the same eigenvalues as A .

We also need the Perron-Frobenius theorem for positive matrices
(3] p. 491

THEOREM (Perron 1907, Frobenius 1912). Let A be an nxn positive
matriz, i.e. A>>0 . Then A has a positive eigenvalue r which is a sim
ple root of its characteristic polynomial and greater than the modulus of

; 5 o
any other eigenvalue. A has an eigenvector x:= (x --u% )7 correspon-

tr
ding to r , which has components x,>0 for: all E= lpusayh

We shall also use the concept of M-matrix ( M due to Minkowski).
et B™" be the space of the nxn real matrices and denote by Z"*n

the class

(A= (a,)er™

o S0, A5 .
ij ij

Obviously every matrix A of this class can be expressed in the

form
(5) A =sI-B 5 s>0 , B=0
Recall that the spectral radius of an nxn complex matrix C is

the maximum value of the modulus of all the eigenvalues of C . It is de-

noted by p(C)

DEFINITION. Any matrix aez™ which can be expressed in the form

(5) with sz p(B) , is called an M-matric.

We arc already in conditions to establish the main result of this

note.
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THEOREM 1. Let X be the nxn real matriz given by (1). Then 0
is a simple eigenvalue of X , the remaining etgenvalues of K have nega-
tive real part and there exists an eigenvector of X aszociated to 0
whose components are positive.

PROOF. By adding the n-th, (n-1)-th, ..., 2-nd rows of K to
its 1-st one, the resulting matrix has the same determinant as K and,
thus

o] 0 . & 0
i
k - k s @ & k
21 Tk %52 2n
x| = a=t =0
n
knl l(n2 . : -jzl kjn

Taking into account that the determinant of K is equal to the pro

duct of the eigenvalues of K , it follows that 0 is an eigenvalue of KX .

By the Gershgorin theorem, all the eigenvalues of K lie in the

union of the disks

(p=1,...,n)

w
+
I 13
=
"
I| £33
=

(we recall that kjj =0 4 Feliwuayl ) @

So, all the non-null eigenvalues of K are complex numbers with
negative real part. Indeed, these disks are contained in the semiplane

Re(z) £ 0 and their only point in common with the imaginary axis is z=0 .

If we set A:=-K then Ae ann and we can write A=sI-B with
s>0 and B>0 . Moreover, if 7\1,?\2,...,hn are the eigenvalues of K
then —11,—2«2,...,—2‘\“ are the eigenvalues of A . On the other hand, as
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(6) [rt-al = 0" |ts-n1-8| ,

if ,l.ln are the eigenvalues of B , then s-u

g g rmee

eigenvalues of A . Since O is an eigenvalue of A , s is an eigenva-

,s—un are the
lue of B . So,

s £ p(B).

Now, by the Perron-Frobenius theorem, p(B) 1is a simple eigenva-

lue of B . Hence s-p(B) 1is an eigenvalue of A and therefore s< p(B)
is not possible because all the non-null eigenvalues of A have positive
real part. Hence s=p(B). And this enable us to derive that 0 is a sig
ple eigenvalue of A . In fact, p(B) is a simple root of the characterii
tic polynomial of B

[wz-8]
vhich yields
) [wi-B| = (u-pBN W

q(u) being a polynomial such that q(p(B)) #0

By replacing y by s-2) 1in polynomial identity (7) and taking

into account (6), it follows that
h1-al = - Gs-p@Na )
where
a, () = D™ ats - 0
and, thus,

q (s-pm) = D™laem) £o .
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Therefore s-p(B) is a simple root of ‘}\I—Ai =0 .As 0=s-p(B),

0 is a simple eigenvalue of A and K .

Finally, as A=sI-B with s=p(B) , A is an M-matrix . Morecver
A is singular and irreducible, whence there exists a vector wv>>0 such

that av=0 ([1], Theorem (4.16)(2), p. 156). Thus,

i)
(=]

Kv

and the theorem is proved .

REMARK 1. Since 0 1is a simple eigenvalue of K we have that
nxl
dim Ker K=1 , Xer K:={xe R 1 ¥x =0} being the null-space of K .
Hence there exists an unique vector wv= (v1,...,vn)T such that XKv=0 ,

v1+...+vn:C and vi>0 for de=Tys segm

ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS
We are going to discuss the existence and value of the

1lim =x(t)
treo
K. . s ; ;
where x(t)=e ¢ is the solution cf (3). For this, we are going to use

the Jordan normal form of K({S] p.236) , that we denote by J.

It is well known there exists an nxn invertible complex matrix

P such that

(8) P KP=J,
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where J is block diagonal matrix

%o 10 o 8
i
i 30 T A
i
g 00 L 4 51
0B .k

TE T e B € R ) EnE=l s oo )R
1 1 s

Ji is called the i-th Jordan block. It may be that Ai=hj

although i#j. Here 11,...,1u are the eigenvalues of K.

From (8) it follows that

JE L e -1
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It is known that ([10] p.389)

n,-1
. m g
2t Y " {n, =11
1
ni—2
t
¢ 1 E sas T
J.t At =
x i
e =e
0 0 0 % & & 1

Eox™ &% el

Choose Al = 0. As )\1 is a simple eigenvalue of K i
lz(O) is 1x1 and )\iz 0 for all i=2,...,u. Besides, an
eigenvector of K associated with 0 can be chosen as the

first column of the matrix P ([5]9.236); that is to say

A
Pyy 2
P2y ©
(%) K =
Pnl 0

If m is an integer 20 and )X 1is a complex with nega-
At
tive real part, then t"e"" » 0 as t » =, Therefore it follows

from Theorem 1 that there exists the
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1 0 0
g 8 & 0
Tam o e P gl
t > . &
o 0o . 0
Py 0 & v,
Poq 0 0
B = .
‘;!]
2 0
pnl 0

Kt
Taking into account that e >>0 for all t>0 , x(t) is a real

vector and x(t}) >>0 for all t>0 . Given that

v, = lim x,{(t) '
i i
t>w

is follows that \7],_ 20 and

V. +.ac+v =1lim (x () +...+x (£)) =¢C
1 n 1 n

t>w»
Furthermore,
Py 0
0 . 0
Py
” 4 -1
Kv=K P c =
o . 0
Pni
Pip 0 0
Py 4] o} . ,
K , K . ., K P c¢=0P c=0 |,
P 0 Q

ni
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by virtue of (9).

Due to the Remark 1, from Kv=0 3 {r],+._.+\)n=C and Gizo
we deduce that v is completely determinated and Gi> 0 for all

i=1l,...,n « Thus, v does not depend on the initial conditions xI(0) =c¢ .

EQUILIBRIUM. In particular, the constant vector-valued function
(e ::!3 defined for all t20 is a solution of (3). It is the solution
which verifies x(0) =v , due to the uniqueness of the solutions in an
initial conditions problem. In such a case, the concentrations of the che
mical species, xi(t) sy v % ,xn(t) , will nct vary with the time.

v = (GI,...,QD)T is the equilibriwm state of system (2).

REMARK 2. In ([6] p. 230-232) it is asserted that if

i
a:= (al" .,an) >>0 is a vecter such that
Ka=20 and Arda 4 kA, =1 A
L n
and we define D :=diag (al,...,an) , then the matrix K D is symmetric.

There, this result is deduced from the "principle of microscopic reversi-

bility" or "principle of detailed balancing", which enables to write

Next, the author defines P :=diag (/;I T ,\/a-—n) and he considers

the matrix

Using again this chemical-physical principle he proves that K is

symmetric and, therefore, all the eigenvalues of X are real .

Now, if
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-4 k12 1
(10) K := 2 -(k12+3) 1
2 3 -2

and 0<k12<1 , it is easy to see that K has two complex eigenvalues

with non-null imaginary part. Thus, the reasoning of [6] must be wrong.

Also in [6] it is assumed that K is diagonalizable, which is

not always true. For example, when k 1 in (10), K 1is not diagoni

o
lizable. In fact, K has two distinct eigenvalues, O simple, -5 dou

ble, but the proper subspace associated with -5 has dimension 1 .

APPLICATION TO THE CASE OF THE HYDROCARBON BUTENE.

Consider the hydrocarbon of formula C4H8 called butene (family
of the alkenes). This hidrocarbon has three isomers called 1-butene,
ets-2-butene and trans-2-butene according to the disposition of the

atoms in the molecule. See figure 2 ([12] p- 506).

CH2 =CH -~ CH2 - CH3 1-butene
CH CH
3>C = =03 eig-2~butene
H H
H CH
Ci=i8 73 trans-2-butene
cH; ~u

Fig. 2



- 158 -

Denote by B],BZB3 these isomers. At fixed pressure
and tempcrature, they coexist in general in gaseous state,

and they interchange inte one another according to the

s

B, ==—————== B

1 k12 2

L N L
13 23

By

Call [Bl](tl. [32]€t]. [03]lt) the concentrations
of the three substances at the time t

reactions

. It is reasonable
te suppose that they vary following the linear differential
system

5
dB

_[ 1 —(kyytkyy) Ky Kqq (s,]
dt

a(s,]

AL - k ~(k,,+kas) k B

4% 21 127550 23 ( 2] '
d|B

[ 3l kg Kgp =k qvkyo) [BJ]

dt

where the numbers ki »0, 141i,j%3, i#3j are the rate constants.
3
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The total concentration of butene, [B1]+[BZ]+[B3],

is constant. Call it C.

It follows from the results of the previous sections

that:

1) There exists the

5

(5,] [=,].,
(11} lim [az] = [32}oo , and
56
[8,] ] [s,].
2) that it is given by
(Byle = wikygkypkygkapekyskyy) '
(Bple = wikyykyyekyyipyrkygkys) ‘
[B3]e = wlyhyprkyqkypeky k) '
where u is equal to
c
kygkqavkyakgpekygkygtkykygakykygekgkygekykyptkakyprkyikyy
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Obviously, [Bl]W . [82]eo . I:BB]“= do not depend on the initial

concentrations.

Let us suppose that one wishes to study this case (n=3)
in elementary terms. That is to say, avoiding the Perron-Frobenius
theorem, the M-matrices and the Jordan normal form. Such a study

can be done throughout the next arguments:

As in Theorem 1 one easily proves that 0 is an eigenvalue

of the 3x3 matrix K . If X =0, Az . A are the eigenvalues of K,

1 3

then

3 2
RS e R R R e SO Ve VIS VP U Vo WO P W Ve

175375273 -

By identifying the coefficients of }2 and A in these two

polynomials, we find that

-(A +A3) =k, +k,, +k__4k

2 D B TR P CALI AL E ’

and

Aty = Kyakygthy gKan Kok g vy Ky gtk Kogthy kogt

+ k, .k k

21%32*%31% 1273 1K35 :

So,

(12)

since kij >0 (i,j =1,2,3, i=j).
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Hence XZ#O and 7\] #0 , whence 0 is a simple eigenvalue.

Suppose that A_=a +182 with uz,Bze]R:

2 =2
st = i s
177 .- If 62¥0 , then 3\3—)\2—012—.1.82 . Thus 2a2—A2+13<0 , which
yields u2<0 R
2nd.— If BZ: 0 , then Az and Xj are real. Moreover by (12), they
are negative. Then either 12#)«3 or A, =A,.

In any case, ), and Ay have negative real part.

If K is not diagonalizable, one can use the Hamilton-Cayley theo

rem to establish that

Ak At
Xt 2 2
Kt 2 l-e 2 te 2
e =e [13+t(A—2\213)} + -——A—Z— (A-2I07 + 72—— (B-2,1.)
2

where 0 and A, (double) are the eigenvalues of K ([11} p. 257-259).
And with this formula one can prove the existence of the given eigenvec-

tor of K associated with O .

FINAL REMARKS

1. If the matrix KX has some element kij equal to zero, it could be ta
ken a new matrix K' with the element k],.j of the entry (i,j) near
ly equal to zero. This is possible due to the continuity of eKt and

of the eigenvalues of K with respect to the matrix K .

2. The convergence of all positive solutions of (2) to an unique limit
as t—=+e , can be also deduced from a theorem of G . Birkhoff and
L. Kotin [13]. This theorem is related with a time-depending coeffi-
cient system similar to (2). It makes use of the Hilbert projective

metric on the space of directions.
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