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A graph-theoretical approach to the problem of hierarchi-
cal ordering of isomeric structures has been developed.
The key to this apureach is the graph centre and its self-
returning walks. C7-09-a,lkane isomers and their critical

pressure hove been used as 1llustrative example.

INTRODUCTION

Progress in experimental chemistry and physles has resul-
ted in the accumulation of a lerge amount of data on
molccular properties. Rationalization of these data is of
consideravle theoretical interest and may facilitate cal-
culation znd prediclion of molecular properties.

Por purposes of Tfinding structure-properties correlations,
the connectedness (the atom - zieon connectivity) cr, more

pencral, the topolopy of = moiccule is one of the aporo-
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aches used frequently1"12. The topolegy of each molecular
graph is converted into a descriotor which may be a matrix,
a nolynomial, a sequence of numbers, or a nimerical index.
Nlumerical indices developed for this purnoge are called
tovological indices13.

Experience indicates that a single topological ouantity is
usually not sufficient for the description of molecular
preperties, because it emphasizes a single structural fea-
ture. Therefore, when comparing molecular data and topolo-
gical descriptors, additional criteria are necessary5’9’1c.
In this paper we propose a vrocedure for ordering alkanes,
based on the self-returning walks of the pgranhs’ central
vertices. Next, critical quantities are analysed.

Some Definitions14

A connected acyclic graph (a tree) T is congidered. Let v
be a vertex in T and u; be vertices neighbouring v. The va-
rious edges incident with v will then be denoted by E;=(v,
uq ). All edges which belong tc naths from v, ineluding &

as a first edge, form the suvgranh &i= B(v,Ei). de call Li

a branch defined by B, and v; Ej ig included in b The
2

3

number of edges in 31 is ne(ﬁi) so that

ng(r) = 2_ n () (1)
L
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The number

w(v) = max ne(Bi) (2)
is called the tree weight at v and any branch Bi with

n (B;) = w(v) (3)
is a weighted branch.

The mass centre m is the vertex of minimal weight :

w(mo) = min w(v)

A finite tree T has a single mass centre when
w1 £ 3 (D (4)

and two neighbouring mass centres when

w(n) %ve(‘l‘) +1
The latter case occurs only when T has an odd number of
edges, hence,an even number of vertices.
The weights at the nonterminal vertices of a tree are pre-
sented as an example.
The weight at each terminal vertex is 14,the number of

graph edges.

The mass centre is not the sole central point specified

for the graph.Another central pointl4 ig also known which

we call the (classical) graph centre.let ¢ be a graph ver-
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tex.Let r(c) denote the maximum distance d(c,x) from c¢ to
other graph vertices x :

r(c) = max d (c,x) (5)
We call c  the (classical) graph centre if t (c) has a mini-
mum for this vertex;

r(e,) =min r (c) (6)
The classical graph centre definition often results in two
(for trees) or more (for cyclic graphs) nonequivalent ver-
tices.Consequently,a generalized graph centre concept has

recently been proposed15’16

and it is specified by a hier-
archical series of conditions,which preserve (6) as the
first condition.When two or more vertices satisfy the condi-
tion (6), the vertex with maximum distance number d(ec) is

specified as a graph centre:

ale) = z d(c,x) (7)
X
d(co) = min d{c) (8)

When two tree vertices have the same minimum distance num-
ber, the tree centre (condition (3%))}is the one with lesser
occurrence of its largest distance,or if the latter are
equal,of the next largest distance,etc.The example below

illustrates the approach.

A

12
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Here, vertices 1 and ¢ are regarded as equivalent according
to the first two criteria, i.e.: (1) = r(2) =3, d(1) =

= d(2) = 13; the third eriterion, however, svecifies vertex
1 as single graph centre because the maximum distance

(dmaxs %) occurs once for the vertex 1 and twice for the
vertex 2.

A random walk in a graph is a sequence of edges which can

be traversed starting from any vertex and ending in any ver-

tex. Repeated use of the same edge or edges is permitted.

A self-returning walk is a random walk starting and ending

at the same vertex.

Self-returning walks may be computed? by the use of the
dizgonal elements of the first I powers of the graph adja-
cency martix, A. Fach individual diagonal element (ék)ii
of the matrix gk can be interpreted as the total number

the self-returning walks of length k proceeding from ver-
tex i. The length of a walk is the total number of the tre-
verced edges. lor trees, = simnle method for calculaling
(Ak)ii was pronosed17 recently.

4 zequence of integers, (g1)ii. (Az)ii,..., (:\H)ii (with
(4
power) assipned to each atom in a molecuvle is called the

4

-
5 - . k =
atonic code’ . Tor trees (A4

i tihe ith aisgonazl entry of the kth adjacency matrix

odd numbers
)ii = and there-

fore tne atomic code contains only even nowers.
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THE GRAPH-CENTRE SELF-RETURNING WALKS AND THE
ORDERING OF ISOMERIC MOLECULES
Different approaches to the ordering of isomeric molecules

have been propoSed4:5o1O. 18-2%

including here the use of
some topological indices,as well as different molecular

or atomic codes.

In our study we represent the molecule by the atomic code
of the graph centre as specified in the foregoing.Combining
thus the centric properties of isomeric molecules with the
detailed description of their shape by means of the self-
returning walks we hope to reflect more adequately the to-
pological nature of some molecular properties,

We have examined the atomic codes of both the mass-centre
and the generalized graph-centre.For uniqueness of the pre-
sentation each molecule must be presented by a single ato-
mic code.The trees,however,often have two central vertices
(a bi-centre).This is not an obstacle when the two verti-
ces are equivalent (i.e.when they belong to the same orbit
of the graph’s automorphism group).The generalized graph
centre concept excludes the possibility of arriving at two
nonequivalent central vertices.This is,however,not the case
with the mass centre.This occurs, for instance,in six out

of 18 cases of CB-alkanes .In such cases the mass centre

with larger (52)m was chosen following the intuitive idea
)
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that the mass centre should be the Toot of more branches.

In case the two mass centres have (52)m = (iz)m;,then we
o] [¢]

proceed with the reguirement of larger (&4)m sete. as, for

o
example,in case of 2-methyl heptane :

Heve, (4., = (4%),, = 2 ut (ah), . =7 >6 = ah,,.

Having determined unambiguously the central vertex,we rep-

resent the molecular graph by the atomic code of this vertex.

Then,the ordering of isomeric siructures is straightforward

by using numerical priority when two codes are compared

digit by digit.Taking into account the diversity in proper-

ties of the secondary,tertiary,etc.atoms we classify them

in different groups,or regard the isomers with such cen-

tral atoms as non-comparable.One thus arrives to the con-

dition that the iscomeric structure with centre i shenld pre-

cede the one with centre j if
(AE)ii = cﬁz)jj

8 & B



- 132 -

It should be mentioned that the Nth power considered in our
study is the largest one generating for the respective n-

alkane a matrix still considering entry equal to one.

ORDERING OF 07-09 ALKANES AND THEIR

CRITICAL PRESSURES

The mass centre atomic codes of all isomeric compounds ha-
ving 7,8,and 9 carbon atoms are presented in Table 1, As
seen, the code has a good discriminating power providing
different numerical sequences for all 62 compounds exami-
ned except one pair of Cg—isomers (compounds 44/45). Clear-
1y, the number of such degenerate codes may increase at
higher alkanes. Further, when the generalized graph centre
is considered instead of the mass centre, two more degene-

racies appear (compounds 12/13 anéd 32/30).

Table 1. The Isomeric Alkanes C7 to Cg, Their
Mass Centre Atomic Codes and Critieal

Pressuresg4
N =17 kass centre Critical
atomic code pressure
(atm)
1. n heptane (2,6,20) 27.0
2. 2M hexane (2,7,26) 26.98

%3, 2,41k pentane (2,8,%2) 27.01



4.
5.
6.
Te
8.

10,
1
124
13.
14.
15.
16.
17.
18.
19.
20,

21,
22.
23.
24.
25.
26.
27,

28
29,

Table 1
(continued )

3M hexane

3E pentane

2, %Ml pentane

2,2MM pentane

3, 3MM pentane

2,2, 3MNMM butane
=28

n octane

2 heptane

2,58M hexane

2M neptane

4M heptane

2,4MM hexane

3E hexane

2,3MM hexane

3, 4k hexane

2k, 3E pentane

2,3, 4NN, pentane

2, 25N hexane

24 2,4MM pentane

%, 3liM hexane

2,2, 3MMM pentane

3M, 3E pentane

2,%,3MMN pentane

2,2,3,3MNEM butane

N =9

I nonane

2h octane
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(3,11,42)
(3,12,48)
(3,12,50)
(4,17,74)
(4,18,82)
(4,18,84)

(2,6,20,69)

(2,7,26,98)

(25752 T5106)

(3,11,42,163)
(3,11,43,171)
(%,14,43,173)
(3,12,49,201)
(3,12,51,219)
(3,12,51,221)
(3413,57,251)
(3,13,59,269)
(4,17,74,3%26)
(4,17,75,33%8)
(4,18,8%,385)
(4,18,85,409)
(4,19,391,436)
(4,19,93,458)
(4,19,97,508)

(2,6,20,70)
{246,21,78)

27.77
28.53
28.70
27.37
29.07
29.15

24.54
24.52
24.54
25.13
25.09
25.23
25.74
25.94
26.57
26.65
26,94

24.96
25434
26.19
26.94
27,71
27.83
28,3

22.58
22,6



30.
31,
324
33.
34.
35.
36,
37.

38,
39,
40,
Al
42,
43,
44.
45.
46.
47.
48,
49,
50.
51
52.
53.
54.
55.
56.
57.
58.

Table 1
(continued)

2,6MM heptane

3M octane

2,5MM heptane

3,5MM heptane

2,2 MM heptane
2,2,5MMM hexane
2,2,4MNM hexane
2,254,4MMMM pentane

4M octane

2,4MM heptane

3E heptane

4E heptane

2M, 4E hexane
2,3MM heptane
2,%,5MMM hexane
3,4KM heptane
2M, 3E hexane

3M, 4E hexane
2,3, MMM hexane
2,25 3MMM hexane
2,4MN, 3E pentane
2,2MN,3E pentane
2,2, 3%, 4MMMN pentane

%,3MM heptane
4,4MM neptane
24,4, 4MMM hexane
3M,3E hexane
243, 3NFM hexane
3,3, 4MLM hexane
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(2,6,22,86)
(2,7,27,107)
(2,7,28,115)
(2,8,34,146)
(2,8,35,156)
(2,8,36,164)
(2,9,42,197)
(2,10,50,250)

(5,10,:43,472)
(3,11,44,182)
(3,12,49,202)
(3,12,50,210)
(3,12,50,212

(3,12,51,220)
(3,12,52,2%0)
(3,12,52,2%0)
(%,13,58,260)
(3,13,58,262)
(3,13,60,280)
(3,13,62,302)
(%,14,66,%12)
(3,14,68,336)
(3,14,70,754)

(4,18,33,386)
(4,18,84,396)
(4,18,84,398)
(4,129,92,447)
(4,19,94,469)
(4,19,94,471)

22.7
23.1
23.2
25T
22.9
23.0
23.5
24.5

23.1
23.1
2347
23.6
23.7
23.7
23.7
24.3
24.2
24.8
24.9
24.6
24.9
25,42
25.75

24.0
24,0
24.0
2042
252
2529
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Table 1

(continued)
59. 3,3EE pentane (4,20,100,500) 26.4
60, 2,3MM,3E pentane (4,20,102,522) 26.5
61. 2,3,3,4MMMM pentane (4,20,104,544) 26,8
62+ 252,53, 3MMMNM pentane (4,20,106,572) 27.05

Inspection of Table 1 shows a close parallelism between
the ordering of the isomeric alkanes according to their

mass centre atomic codes and critical pressuress’ez. Three
groups of isomers (A,B, and C, respectively) are formed
for each of the 07, 08, and c9 alkanes; i.e., isomers ha-
ving secondary, tertiary, and quaternary atoms as mass
centees.

For 07-isomers only one minor irregularity in the ordering
of the critical pressure occurs with compounds 1 and 2.

For isomers with eight carbon atoms the ordering of the
compounds with quaternary central atom displays full paral-
lelism with their critical pressures while for those with
tertiary and secondary central atoms only one minor disag-
reement occurs with ‘APcr = 0.04 and 0,02 atm, respective-
ly. Even for the largest class of 35 Cg—isomers the agree-
ment is complete for group C, three discrepancies occur

for isomers of group B, and a single but strong displa-
cement is found for 3,5MM heptanewhich should be placed

three positions down the group A scale.
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it is of interest to check which ordering provides better
agreement with the critical pressures : that with atomic co-
des based on the mass centre or on the generalized graph
centre, Actually, the two graph centres do not coincide for
only about 1/6 of the compounds examined (compounds 7 ; 11,
13,15,21,22,24534,40,4% ,53). Interestingly, the six dis-
crepancies for Ca-isomers occur only for the compounds ha-
ving two non-equivalent mass centres and they would disap-
pear if the opposite choice of a single mass centre has
been made ( (_&Z)m < (Az)m'. and if (,%.2)m = (gz)m,),
) ) o o

(£4)mé < (Aq)mé)‘ The resuliing ordering of the 60 com-
pounds examined is given below ( the isomers of groups A,
B and C are divided by semicolumns) :
C7: 14253, 73455,:658,9
08:1,2,5,4,6,12,13;5,7,8,9.10,11,15; 14,16,17,18
09: 28,29,30,34,31,3%2,40,43,3%,35,53,36,37; 38,39,41,42,44,

45,46,47,48,49,50,51,52; 54,55,56,57,58,59,60,61,62
Comparing these sequences with the critical pressure values
from Table 1, one concludes that the isomers with a guater-
nary central atom preserve their ordering, those with a
tertiary central atom slightly improve it while for the
enlarged groups A some more discrepancies appear. Further,
the overlap between the values of the critical pressure of

these three groups of isomeric molecules is now diminished.
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Hence, we conclude that the self-returning atomic codes of
the mass centres and generalized graph centres do not dif-
fer essentially in ordering the critical pressures of 07 to
Cg-alkanes. A more diversé%ﬁolecular properties should be

examined in order to make such a cheoice possible.
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