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Abstract: The method of additive nodal increments (ANI) is
applied to analyze the dependence of the modified topological
index Z and the spectral radius of adjacency matrix R on the
topology of benzenoid hydrocarbons. The derived formulae

enable these quantities to be calculated with relatively high
degree of accuracy.

INTRODUCTION

The dualistl of the graph corresponding te a particular
benzenoid hydrocarbon comprises whole information needed to
calculate any molecular property of the compound. Because of
this fact it is guaranteed that there exists some function
which relates the structure of the dualist and the property.
The gquestion about the form of this function arises in a
natural way. A partial answer to this problem has been given
by the additive nodal increments approach , which accounts
for  the topological dependence of some quantities
characterizing the molecule. For instance , the total

pi-electron energy2:3 and the topoclogical resonance energy*
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can be expressed in terms of the nodal increments.

A method of the decomposition of the dualist inte nodes
was described several times2/3:4/5 and therefore here we
recall only the following definitions4:5 :

1. Let n be the vector of the number of nodal increments

inherent in the dualist. If the value of some property P can

be approximated with reasonable accuracy as :

P=p(n) (1)

then P is called nodally dependent.

2. In the simplest case we deal with the following relation :
P=n.gP (2)
Then P is called nodally additive and gP is the vector of

nodal increments.

It should be accentuated that there exist some properties

which cannot be expressed by eq.(l) or (2). These properties

we call globally dependent , since they reflect the glcbal
structure of the dualist. An example of this type of behavior
is the HOMO-LUMC separation.

The advantage of ANI approach 1lies on its extreme
simplicity. One can argue that the methed uses a huge number
(12) of the parameters to reproduce accurate values of
molecular properties. The idea of ANI treatment is , however,
not only to provide us with another approximate topological
formulae , but also to systematize and study the topological
dependencies on the dualist's structure , which is done
within this approach in a very clear and straightforward

way.
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In this paper we present the application of ANI to two
important graph invariants : the modified topological index 2z

and the spectral radius of the adjacency matrix R.

THE MODIFIED TOPOLOGICAL INDEX AND THE ADDITIVE NODAL
INCREMENTS

The modified topological index 2 has been introduced by
Hosoya and Gutman as® :
z=i"Ng (G, 1) (3)
where ¢(G,x) is the characteristic polynomial? of the
molecular graph G having N vertices and M edges and i=}-1 .
The importance of Z leans on its relation to the total
pi-electron energy (Epi)s,S,Q,lo‘

Z can be also expressed as :

N2

1nZ= 1n(1+xi) (4)
4

‘
where xj is the i-th eigenvalue of the adjacency matrix A
corresponding to G. Using the reasoning analogous to the one

in ref. 3 , the function 1n(l+x2) can be approximated by

means of the Legendre polynomials:

00
In(1+x2)= Z CrPr,(x/3)+1n9 (xe<-3,3>) (5)
L=C

where:
{
cr= SPL(x)ln(;-ﬂcz)dx (6)

-4
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A truncation of the series (5) on the 8th term leads to

the relation:

8
1n(l+x§'_)‘8 Zbe; (7)
L0

with appropriate coefficients bp. Thus , from egs.(4) and (7)

we have:
8
1nZ¥0.5 Z brpL (8)
L=0
where:
: L
Fr= Z xi=Tr (AL) (9)
i=4

is the L-th moment of A. The accuracy of the expansion (8) is
even better than in the case of Ep13 because of a "more
smooth" character of the function 1n(1+x2) than of the
function |x|. As it was shown in ref. 3 the moments Mo s iMg
can be expressed in terms of appropriate nodal increments:

Mr=n.g (D) (L=0,2,4,6,8) (10)
Ma=pa=Hs=pz=0 5
Therefore we can expect , that also Z can be calculated

approximately as :

1nZ ®% n.g? (12)
where :

g
gZ=0.5 ZbLg(L) (13)

L=0
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This result is verified easily by a numerical testing.
First , the vector g? was computed from analytically derived
coefficients by, and the vectors g(L). Then the obtained
values were compared with the increments g? determined by
means of the least squares fitting and a reasonable agreement
was found. Because of that we quote the fitted gz‘s (Table 1)
since they give a slightly better result due to higher terms
of the expansion (5) included in a semiempirical manner. The
test set of molecules covered 1030 possible singlet ground
state , planar benzenoid hydrocarbons with 2-8 rings2, The
accuracy of 1nZz is characterized by the average error 0.02% ,
the standard deviation 0.03% and the maximal error observed
0.10%. These figures are to be compared with the ones for
Epi : 0.07% , 0.09% and 0.47%2.

The nodally dependent character of 2 is striking.

TABLE 1. THE NODAL INCREMENTS gZ AND THE RATIOS gE/gZ.

Node*) g2 gE/g?
2l 2.568706 2.665
2 2.140404 2.641
3 2.166869 2.654
4 2.267500 2.644
5 1.787431 2.638
6 1.863064 2.622
T 1.971999 2.659
8 1.590606 2.657
9 1.592051 2.655

10 1.667971 2.627
1l 1.395820 2.635
12 1.201862 2.575

*)the enumeration of nodes as in ref. 2 (see also Fig.1).
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As it has been observed first by Aihara® and later tested

nunerically by Gutman et al.® there is an approximate linear
relationship between E,j and 1nZ :
Epi=2.6501n2 (14)
Since both Epj and 1nZ can be computed from the nodal incre-
ments gE and gz , respectively , one may be interested how
the validity of (14) is reflected by a constant ratio of the
components of these vectors  An inspection of Table 1 allows
us to draw a conclusion that the ratio varies within the
range of 3.5% and thus eqg.l4 cannot be accurate for all
benzenoid compounds.

Finally it should be pointed out that the relationship
between Z and the size of the hydrocarbon has been analyzed
recently by Gutman and Shalabill and certain exponential
increase of Z with the size of molecule has been evidenced ,

which is in agreement with the results of the present work.

THE SPECTRAL RADIUS R AND THE ANI APPROACH

The spectral radius of the adjacency matrix (R) , equal to
the energy of the lowest occupied pi-molecular orbital within
Huckel Hamiltonian picture , has been investigated several
times13,14,15, The approaches to this problem are obviously
based on the Rayleigh's quotient techniquel2,
For the adjacency matrix A we define the following quantity :
My=utaku (15)
where u is the vector of (1,1,...,1). Let us diagonalize the

matrix A:
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a=ctxe (18)
where C is the matrix of eigenvectors and X is a diagonal
matrix of eigenvalues. Then we can rewrite eq. (15) as :
My=utxKu= iwzix; (17)
where g=ggwénd X is the vector of the increasingly ordered
eigenvalues of A . The quantity :

r=Max+1/Mak (18)
is being used to estimate the R. In particular , Hall has
examined the cases for k=0 and 113. A quite different appro-
ach has been proposed recently by Cioslowskilé4.

The use of such an approximation can lead , however , to
incorrect results. Since the benzenoid hydrocarbons are
alternant systems , the matrix A has twc eigenvalues of the
largest module, namely R and -R. Thus the sequence of numbers
rx converges to :

Ri=lin ry= (-wiR+wiR) / (wh+wh) =R (wi-w3) / (wh+w?) (19)
—0o

instead to the true R. As pointed out by Polansky and
Gutmanl® , an equality R'=R occurs only for the hydrocarbons
possessing certain elements of symmetry.

There is a simple methed to avoid this difficulty. Let us
define the gquantity :
Sx=My+2/Mx (20)
Then we have :
S=lim sy=(wiR2+wfR?) / (wi+wh)=R2 (21)

o

One should also note , that for every k , ry is a lower bound
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for R , whereas sy is a lower bound only when k is even.
Therefore we have the following sequence of approximations of

the rank 0 , 1 and 2 :

R(®)=g41/2=(1;/M5) 1/2=( (10M-6N) /N) /2 (22}
R(1) =5y 1/2=(M3/01) /2= (u3/2M) 1/2 (23)
R(2)=g,1/2= (M, /M,)1/2=(M,/ (10M-6N) ) 1/2 (24)

The idea of the nodal increments can be applied to
calculate N , M , M3 and My ; and in turn to estimate R. It

can be shown that the following relations hold :

N=n.gN (25)
M=n.g¥ (26)
M3=n.g"3 (27)
My=n.gM4, 2ny (28)

where : g¥ , gM , gM? and gM4 are appropriate nodal
increments and np is the number of the benzanthracene units
present in the dualist of the hydrocarbon?.

Now , equations (22)-(24) can be rewritten (neglecting a

small term 2np in eqg.28) as :

R(®)=(n.gU(0) yn.gl(0))1/2 (29)
R(1)=(n.qU(1) /p.qLl(1))1/2 (30)
R(2)=(n.qU(2) /n.ql(2))1/2 (31)

where gl' and gU are increments quoted in Table 2. For the
sake of convenience , all the gj's and gi's are scaled down
by 9313.

The accuracy of the approximations (29)-(31) , that conta-
ins no empirical parameters , was tested numerically on the

standard set of 1030 singlet ground state , planar benzenoid
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hydrocarbons having 2-8 rings. It can be observed (Table 2)
that the standard deviatien drops from 5.5% to 2.4% when the
rank of the approximation raises. However , the best results
are achieved when the increments gU and gl are found by means
of the least squares fitting. The equation of the form :

R % (n.gY/n.gl) /2 (32)
where the increments g; and gj (i=1,2,...,11) were fitted ,
g1z was assumed to be equal 1 and g5 equal to 9 (in order to
provide R=3 for the graphite lattice) provides us with R
having reasonably small (0.3%) standard deviation from the
exact radius. The values of gU and gL are shown in two last
columns of Table 2.

TABLE 2. THE NODAL INCREMENTS gU AND gl. THE ERRORS

CORRESPOND TO THE STANDARD SET OF HYDROCARBONS
DESCRIBED IN THE TEXT.

Rank 0 Rank 1 Rank 2 Fitted
gU(0) gL(0) GU(1) gL(1l) gU(2) gL(2) gt

gL

1 12.500 2.500 9.500 1.833 7.278 1.389 3.739 0.700
2 13.000 2.000 11.000 1.667 9.444 1.444 4.179 0.612
3 13.000 2.000 11.333 1.667 9.889 1.444 4.557 0.629
4 12.000 2.167 9.667 1.667 7.889 1.333 4.324 0.734
5 13.500 1.500 13.500 1.500 13.167 1.500 8.574 0.908
6
7
8
9

12.500 1.667 11.500 1.500 10.611 1.389 5.904 0.713
11.500 1.833 9.833 1.500 8.500 1.278 6.183 0.906
12.000 1.333 12.000 1.333 11.778 1.333 10.359 1.165
12.000 1.333 12.000 1.333 11.778 1.333 14.456 1.757
10 11.000 1.500 10.000 1.333 9.222 1.222 8.391 1.094
11 10.500 1..167 10.500 1.167 10.389 1.167 13.837 1.666
22 9.000 1.000 9.000 1.000 9.000 1,000 9.000 1.000

average error 5.4% 3.2% 2.4% .23%
standard dev. 5.5% 3.2% 2.4% .29%
maximal error 7.8% 4.9% 3.7% 1.52%

*)the enumeration of nodes as in ref. 2 (see also Figa1)s
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The present approach has been tested alsc on some large
aromatic systems (Table 3). It was found that the method
works quite accurately giving the values of R with the error
of about 1%. It means , that the spectral radius can be

regarded as the nodally dependent property.

TABLE 3. EXAMPLES OF THE ANI AND THE EXACT Rs FOR SOME
BENZENOID HYDROCARBONS
Compact name®*) R(exact) R(ANI) Error[%)
/8.30.14.15.2/-tridecacene 2.791 2.768 0.83
/7.7.7/-nonacene 2,716 2.711 0.21
/14.15.7/-decacene 2.741 2.733 0.30
/30.31.15/=tridecacene 2.776 2.761 0.55
/28.18.17.9.7/-dodecacene 2.599 2.653 2.07
/7.14.28/~nonacene 2.666 2.672 0.24
*)ref.16
CONCLUSIONS

The ANI approach was applied to the topological invariants
of the molecular graph. The numerical tests show that both
the Z index and spectral radius R can be calculated with a
reasonable degree of accuracy from their nodal increments.
This result can be useful in checking some relationships
between different graph invariants (as it was shown on the
example of the Z/Epi ratios) as well as in studying the

dependence of Z and R on topology of the molecules.
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