maefleh no. 17 pp. 91-120 1985

1.NUMBERS OF CONJUGATED CIRCUITS AND KEKULE

CHEMICAL GRAPHS.XLI
STRUCTURES FOR ZIGZAG CATAPUSENES AND (J,K)-HEXES;GENERALIZED

PIBONACCI NUMBERS

Alexandru T.Balaban 2 and Ioan Tomescu 2

Polytechnlic Institute,Department of Organic Chemistry,
Splaiul Independentei 313, 76206 Bucharest,Romania

lor

University of Bucharest,Faculty of Mathematics,
Str.Academiei 14, 70109 Buchareat,Romania

(recceived: December 1984)

Abstract. The numbersa Kj,k of Kekulé structures in
(j,k)-hexes (non-branched catafusenes formed by k strings of
linearly condensed benzenoid rings with j rings in each linear
portion) can be considered to be generalized Fibonacei numbers,
because the sequence Ki,k for increasing k values (k=1,2,...)
is the Fibonacci sequence.Explicit and recurrent expressions
are obtained for Kj,k' FPor the same (j,k)-hexes the numbers
Rj.k of conjugated 6-circuits are calculated by recurrence rela-
tions and explicit algebraic expressions in j and k,and are
found to form an interesting numerical triangle if decomposed

into polynomials in terms of j for each k value.
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In (1,k)-hexes,i.e. helicenes and isoarithmic catafusenes,
the numbers of 10-,14-,18-,...-membered circuite form the
same numerical sequence Rj,k as for conjugated 6-circuits ,
but with shifted j-values.General expressions are obtained
for resonance energies of such (1,k)-hexes using Randid's
approach. Sequences Rg?ﬁ*z) in (j,k)-hexes are also discussed.

The ratio between the number RJ.k of conjugated 6-circuits
and the total number (jk+1)KJ'k of benzenoid rings in (j,k)-
hexes is calculated both by using explicit algebraic expres-
sions,and recurrence relations;in addition,for facilitating
the obtention of numerical data,a small computer program was
devised.It was found that the asymptotic 1limit of the above
ratio for k —» o leads to a simple algebraic expression

(47). A list of main symbols is appended.

l.Introduction

1,2 we have discussed the number of Keku-

In previous papers
1é structures for polycyclic aromatic hydrocarbons(polyhexes)
having non-branched cata-condensation(non-branched catafuse-
nes),.We have called isoarithmic the systems whose L—transrorm3
of the 3-digit code (30¢)**> was identical;in other words,
non-branched isoarithmic catafusenes have the same sequences
of straightly-annelated benzenoid rings,irrespective of the
direction of annelation.

Thus,pentahelicene (1) is isoarithmic with picene (2),and

with (3);two other isomeric penta-catafusenes 4 and 5,form

another isoarithmic pair,because their L-transform or two-



(1,4)-Hexes : and and

1=
Ino
fu

3DC 111 121 112

2DC : 111 111 111
4 5

3DC : 102 101

2DC 101 101

digit code (2DC) is identical.An equivalent of the L-transform
is the LA—uequences.Isoarithmicity leads to closer physico-
chemical similarity (e.g. electronic and photoelectronic

npectraa,chsmical reactivityg 10

yetc.) than isospectrality ~,i.e.
identity of characteristic polynomials and eigenvalues of the
Hickel characteristic polynomial.All isocarithmic polyhexes
have the same number of Kekulé structures,hence the same
gextet polynomial and Kekulé polynomial.

The number of Kekulé structures for non-branched catafuse-
nes may be found easily by using the Gordon-Davison algorithm?
or by applying algebraic or recurrence formulas described in

our previous paperel'e.ln the case when the numbers J in each

linear portion of the non-branched catafusene are equal,these
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formulas take particularly interesting aspects.In the present
paper we shall examine such catafusenes,composed of k linear
portions,each containing j benzenoid rings,and shall call them
(J,k)-hexes.Thus,1-3 are both (1,4)-hexes,6 and 7 are both
(2,3)-hexes.

(2,3)-Hexes :

lon
1=

3DC : 01020 01010

2DC : 01010 01010

One may consider the isoarithmic (j,k)-hexes as generalized
catafusenes in complete analogy with helicenes or zigzag
(fully benzenoid) catafusenes,which are (1,k)-hexes.

It should be noted that j is obtained by subtracting one
from the number of condensed rings in any linear portion of
(j,k)-hexes.We shall not discuse here systems such as 4 or 5
where j differs from one linear portion to another.

One can verify easily that the number n of benzenoid rings
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in (j,k)-hexes is
n=Jjkc+1 (1)

2 .Numbers of Kekuld structures

1,2

It was shown that the numbers Kj k of Kekulé structures
’

for (j,k)-hexea obey the following recurrence relationship
By = 3Ky 01 + Ky pop (2)
When j = 1 (i.e.,for helicenes such as 1 and their isoarithmic
catafusenes) the numbers Kl " of Kekuld structures form the
’

Fibonacci sequencel?2+78,

k+2 (3)
where Fo = Fl = 1 are Fibonacci numbers,defined by
Py= Py g + Py 5= 2P 5+ Fy 5= 3P 5+ 2R ,,etc. (4)
For (j,k)-hexes the relationship (2) gives numbers of Keku-
14 structures KJ X which can be considered as generalized
’

Fibonacci numbers.Table 1 presents some numerical data on such

numbers.

Table 1.Fibonacci (first row) and generalized Fibonacci

numbers Kj,k

i i 1 2 3 4 5 [
1 3 5 8 13 21 34
? 4 10 24 58 140 338
3 5 17 56 185 611 2018
4 6 26 110 466 1974 8362
5 T 37 192 997 5177 26882
6 8 50 308 1898 11696 72074
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In order to obtain an explicit formula for generalized

Fibonacci numbers,by analogy with Binet's formula
Vs \ i+l i+l
1+ V5 1- V5 /\f
Fi = [(_2_._.) _(_2_) ] 5 (5)

we look for the general solution of equation (2).We note that,

in addition to (2),we know for acenes:

Kj,l =] +2 (6)
and also for V-shaped (J,a)~hexealz
Ry p= (3 12 +1=324234+2 (7

The general solution will be of the form
k k
Ky g = ar] + brp (8)
where T, verify the characteristic equation
re - rj -1=0, (9)
therefore r; = (§+ Vi2+a )72 T, = (3= jz+4 )/2 (10)
It can be seen that -1<:r2<:O.In (8) we set succesgively
k = 1,ef.(6),and k = 2,cf.(7):
ar; + br2 = J+2
arg + brg' =32 +25+2

Hence by simple transformations using (10),we have

a(3+ V32+a ) + b(3- Vi2ed ) = 25 + 4
al3%4243 V3244 ) + b(3%42-3 V1%44 ) = 232 + 4] + 4
We obtain the solutions

a = (V32ea 22) [ V5% 5 v = (V320 -2 /\}32+4, (11)

therefore the generalized PFibonacci numbers are:
k

o - k
Ky = Fra s2 (g0 Vi2ea 4 Vi2+a -2 [3- V3%4a (12)
! 2
Vs2ea . ViZ+4




This expression reduces to the Binet formula for j = 1,i.e.,

Bi ke * Pleas 1 95 (30

3.Numbers of Kekuld structures and of conjugated
circuits in (j,k)-hexea

For a given Kekulé structure in a polyhex,Randié on one

handlla 1lb,1llc

,and Gomes and Mallion on the other hand have
independently defined the conjugated circuits in a polycyclic
conjugated system as being a cyclic array of alternating
single and double bonds.In polyhexes,the numbers of conjuga-
ted 6~,10-,14- and 18-circuits play an important role for
estimating the resonance energy (there are no smaller circu-
its in polyhexes,and the larger ones have negligible contri-

butions). 12213

By means of these numbers of conjugated circui'cnu,[{umiid1‘a
obtained a parametrized formula for the resonance energy of
the polyhex,which is in close agreement with Herndon's formu-
la,ae shown by Schaad and Hesa in their excellent revien.14
Actually,Randié only considered in his formula the linearly
independent conjugated circuits,but in Herndon's equivalent
approach all circuits of a given size are considered,irrespec-
tive if they are linearly independent,or if they may be repre-
gented as a superposition of conjugated circuite of smaller
gize.
The number of conjugated 6-circuits is identical to the

number of "perfect benzenoid rings" in Sahini's formulasl’

for the resonance energy;this number was shown to equal the



number of zeroes in the three-digit code of a non-branched
catafusenels.Tne conjugated 6-circuits are relevant to Clar's
theory of aromatic saxtetal7.

We shall compute the number of conjugated b6-circuits in
(j,k)-hexes.On increasing k by one,we have for each Kekulé
structure three situations at the bond becoming annelated
with a string of j+1 linearly condensed rings,illustrated by
(1)-(1ii1) for the case when we add with kinked condensation a
tetracene unit (j=4) to the existing (Jj,k)-hex.ln each Kekulé
structure the bond undergoing annelation will be termed "ter-
minal bond" and the annelated Kekulé structures will be called
"guccessors".In Fig.l we denote a conjugated 6-ring by a cen-
tral dot.Let r be the number of conjugated 6-circuits in the
starting (j,k)-hex undergoing annelation.

(1) The terminal bond is single;in this situation one (iii)-
type successor reasults,i.e. the next annelation at the new
"terminal bond" will be of type (iii);the number r of conjuga-
ted 6-rings (dote) is conserved in the successor.

(ii) The terminal bond is double and belonga to a conjugated
(dotted) 6-circuit;this situation leads to one (i)-type succes-
aor with r dots,one (ii)-type successor with r+l1 dots and j-1
(iii1)-type successors with r+1 dots each.

(111) The terminal bond is double and belongs to a non-dot-
ted 6-circuit;this situation leads to one (i)-type successor
with r+l1 dots,one (ii)-type successor with r+2 dots,one (iii)-
type successor with r+l dots,and j-2 successors of (iii)-type

with r+2 dots each (Fig.l).
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Fig.l.Annelation of Kekuléd structures with tetracene

units;terminal bonds are denoted by arrows.

Taking (6) into account for the first starting term in the

geries which is a (j,1)-hex,i.e.,a (j+1l)-acene,from the j+2

Kekulé structures,one is (i)-type with one dot,one is (ii)-

type with two dots,and the remaining j are of (iii)-type (one

with one dot,the other with two dots each);the total number of



dots is thus R
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g4 = 2] + 2.

On the basis of the above data,the following recurrences

hold,when the number of Kekuléd structures is denoted by ak,ei.

si' and the number of conjugated 6-circuits by rk,ri,ri' for

(i)-type,(ii)-type,and (iii)-type successors,respectively,at

the k-th annelation with a string of J linearly condensed

benzenoid rings:

Kj,k = B +ep+BL' = 8 '428) = Kj,k-1+35i (13)
Rj,k = rk+ri+ri' = ri'+2ri-=i (14)
Bf = 8, (15)
TP = Ty 4E = T e (16)
Bysl = Bkl = Okt an
Bpiq = Bp+(3-D)mp+al'+(j-2)8)" = jaf+jsl'-ap' =
= J8g,1-9' (18]
Fiesd,  PEINR AR m TRy SEE (19)
T, = Tpteperytelsp’ (20)
Tty = T (3-1) (rpeml)ertt4ml '+ (§-2) (rp ' +28y ") =

Jrpe(3-2)ep+ (3-1)r) ' +(29-3)8y! (21)

Prom these relationships,and especially from (13),(17) and

(18),one obtains the recurrence for Kj " in terms of j,k,si
¥

and ai'

,by applying in order the following relations for any j:

B = Wpa¥Eply BT wJepemly 1 Ky Epte2np

wherefrom one obtains easily recurrence (2).

The general formula for Kj K is
L]
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k
Kj'x = (3+41) +1-PJ (22)
where Pj is a polynomial in j of degree k-1,starting with

(k-2)5%"1,

Table ?.Expression for Kj k in terms of k and J
»

k sk' s&wsk Kj,k

113 1 (3+1)+1

2 32 i+l (J+1)?+1

3| 1343 124341 (3+1)341-32

8| 34242 3343240541 (3+1)441-(23%+232)

5| 3%¢33%+3 | 3%+5%030%0250 (3+1)%+1-(33%+53%+45%)
6| 15+a3%4332 | 1%43%a52435%43501 | (3+1)P41-(45% 4954012524

+63%)

The coefficiente of this polynomial form a numericgl trian-
gle which may be calculated from Pascal's triangle.A detailed
digcussion of the rormer numerical triangle was presented in

1,2

the earlier papers from which it follows that

) k-1 k-2 2
Py = W k1d "W e 0d T el W 507

where W, . - (k) ) (Uk+r)/2J) ) (l§k+r-1)/2j)

o r r

for every k,r>1,and LxJ denotes the integer part of x.

4 ,Numbers of conjugated 6-circuits in (j,k)-hexes

For the number R;G; of conjugated 6-circuits in (j,k)-

hexes the relationships (14)-(21) lead to the recurrence
stated below (in this section we shall omit the upper index

(6) from the notation for convenience): R(B) =R, 3
Jsk Jrk



Theorem 1l.The following recurrence relation holds:

Ry o= 3Ry 3 + By o+ 2(Ky o - Ky ) (23)
for k=3 and

Proof: From (15),(17) and (18) we deduce that
Brip = I8, 18, (24)
Taking into account (14),(13) and (1Y) it ie clear that (23)
ig equivalent to
ri'+2ri-sk = Jr&:1+23ri_l-Jak_1+ri:2+2ri_2-sk_2+23sk.or
TRUHRTL = JrTEt,+20Tp (4T a42Ty S+2)8) (25)
because (24) holds.

By substituting s''

E' = 8,78, from (17) into (20) and (21)

we infer that:
Tyl = TytTi +28) 778y (26)

ety o= Irgr(3-Drpt-(3-1)e+(23-3)8 4 (27)

Now we replace the values of ry' and r; deduced from (26)
and (27) in the left-hand side of (25) to obtain after sim-
plification:

rpt T tn=(3=2)rg -(J+1)ey =27} S48y = O (28)
Substituting again LY and 'y from (26) and (27),respecti-
vely,into (28) one finds

L R L R

which is an identity by virtue of (24). D

We ghall solve the recurrence (23) to obtain an analytical
expression for Rj'k,analogoua to (12) which is the general

solution of (2).By substituting (8) into (23) we obtain



= O3 =

| A k-1_,, k-1
Ry = 3Ry 1*Ry y_p*2aT)+2bT,-2ar) " -2br, (29)

where a and b are given by (11).
We look for a particular solution having the form

k k
HJ'k = Cykry + Cykr, (30)

2
From (29) and (30),by equating the terms which contain r

k-2

1
and rz,respectively,and then by dividing with Ty and rg_z,

regpectively,we obtain the two equations

¢ krd = §C) (k-1)r)+C, (k-2)+2ars-2ar,

(31)
2 _ 2
Cri? = JC2(k-1)r2+02(k—2)+2br2-2brz
Taking relation (9) into account,we obtain
rf = rd4l and 15 = T4, (32)
therefore by appropiate substitutions
Par’-2ar 2bro-2br
i Saknisis SRS O B~ Rt (33)
Rl = TR
and by using (32)
?a(rl(j-1)+1) 2b(r,(§=1)+1)
By = EESE>Y and C, = T (34)

The general solution of recurrsnce (23) will be the sum
of the particular solution (30) and the general solution of

the homogeneous recurrence

Y P T (35)

J,k j!k-

which is obtained from (23) by converting Rj x into ﬁJ x and
’ ’
by omitting the non-homogeneous term.
The solution of (35) has the form
= k

Ry =cor + drg (36)



where constants ¢ and d depend upon the initial conditions
of the problem,therefore the general solution of recurrence
(23) 1ia

k k

k k
= cry + dr, + C kr) + C,kr, (37)

Rj,k
where C, and C, are given by (34).
Since the values of a and b are found from (11),a strai-
ghtforward computation leads to the following expreassions

for Cl and C?

lLi_,E__JG_l Jil._é_d_lj % (38)

Jo+4

In order to obtain the values of ¢ and d we put k = 1 and

k = ?2,respectively,into (37) and use initial values R’ 1 <
J9

2§+2 and R, , = 43°+4j+2.We obtain the system

3,2
” 2 \/ 2
+4 - +4 4j+8
c 4t 5 + d 5 = —;%:z‘
o 2243 V3Pua o s%e2-3 Vi 2031%44444)
2 2 ) 3°+4 '

which has the solution

cC = W [(J +4) \lj +4 —(33-‘8):1

- . S {(324) 1244 +J3-8]
(JE+4) J2+4

Substituting (38) and (39) into (37) one sees that

k Fa
Ry y = =5 (j+ gz+4) {(JQM) 1244 =(178) \gic(ge2e Je*"ﬂ
PE 5% : V324

(39)

——\k
+(3- \4321«4) (1%+4) V3%+a +3-8 +ik(+2-V 3244 ) (40)
V32+4
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By & straightforward calculation,taking into account
Newton's binomial formula,from (40) one finds that:

Theorem 2.The following equality holds

§ k k
Rj’k - 21“ [820 (23) 3*‘2’(32%)’-(33-8) DZII (2,41)jk-2a-]’.‘

i k
(et Luges2) O (2,)3“‘?"(3%4)"”1
ax>1

E k
+jk (25+1)jk-—25*1(32+4)ﬂ+2k:]k—l:|

8>0

+ (41)

k
where,by definition, (p) = O whenever p> k+l.

Some numerical values are presented in Table 3.

Table 3.Numbers Rj i °f conjugated 6~circuits

4 3: 2 3 4 5 6
1) 4 10 éO 40 76 142
2|1 6 26 86 266 T82 2226
3| 8 50 236 1016 4136 16238
410 82 506 2818 14794 74770
5l 122 932 6392 41252 256062
6|14 170 1550 12650 97046 715682

From (41) it can be seen that RJ k is a polynomial of
’
degree k in j,of the form:

k-1

k
Rj,k = Al.kj + A?'kj + see + Ak+1,k (42)

From (41) one can deduce easily that

e a](6) ()« (3« e L - (e e B)
" k(:) & o (:) ‘X (:) . ] . ;&1—[2*‘1-(2“'1—1:)»,
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+k(2k'1-1)+k2k'1} =2k 5 Ay = EE%T [2k+2k(2k‘1-1ﬂ = 2k;
P

4
If k = 2p then Ak+1,k = ;E:I = 2 and

k p
1 p-2 p-1 k4
2 Rlen = § [B(k-1)4 # RS ] * Tkl ™ok

If Xk = 2p + 1 one finds that

8-4P~1
Mo = T -2 emd
k P
1 p p] 2k4
Ak = ;E:I‘Ik-l)4 +EP ) g T

It follows that Ak+1,k = 2 and Ak,k = 2k.

In complete analogy with Table 2,relations (20),(21) and
(14),in this order,allow also the construction of Table 4.
These recurrences make use of rk,ri,si and si' ,but the
expressions of s& and s&‘ are the same as in Table 2 and

are not repeated in Table 4.

Table 4,Expression of RJ X in terms of k and j
k]

k ri ré' Rj,k

1 2 2j-1 2j+2

2 43+2 43%-33-1 432+4542

3 63742542 613-5324331 632+63%463+2

4 833423248342 | 83%-7331113%-63-1 |83t48334145%485+2

5 | 10i%+253+1832+43| 101%-93%+2333-1552| 1059+105 44263341852
+2 +43-1 +10j+2

The coefficients Ay o of the polynomial RJ k= 2kjk+2kjk‘1
’ ’

++00.+42k+2 form an interesting numerical triangle pregented in

more detail and in a different format in Table 5.



The structure of this triangle is more complicated than of
the one obtained for KJ X from Table 2.
L ]

Table 5.Numerical triangle of the coefficients Ax Kk

k k-1
of Rd.k = Al,kJ + Az,kd + ees + Ak,kd + Ak+1,k

N E 2 3 & 5 6 71 8 9
1 ? 2

2 4 4

3 6 6 2

¢ 8 8 14 8 2

5 10 10 26 18 10 2

6 12 12 42 32 30 12 2

o 14 14 62 50 68 36 14 2

8 16 16 86 T2 130 80 52 16 2

Algo from (41) we obtain that for r>1 the following equa-
lities hold:
= 22r-k+1 [ g

s>t (?:)(:) - ; (21;1)(5;1) )
(") e >

k
r

(25+1)(

l\21'+1.11c

+ k zz%::j

8>T+l

2r-k+2
Aoria,i = 2 [Z

s>r

But standard binomial formulas2® imply that

I

8>T

2

sxr

k

s

)

()

)

(=

2k-?r

- 2k—2r

8>

I

* |
25

k~r-1

k-r-1

r

r-1

)
)

J|
> ()

s>r+l
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> (;1)('1) | jkearal Uw-l) L (k_,) +

8>r+l e > Lo
k-r+l k-2
. 2"( s )- i 2 QgTgRE=2 ( . )+ (_1)‘”221"J+(_1)1"1k;
k a-1 k-r-1 2 [ k~-r
25 () e [ 00)- £ () -
!2r+1 8 r r r- T r-

F— (-1)1”'1221"?] o DT o 97,
By substituting these values in the expressions of A . (8=3)
’
we infer that for r>1 the following equalities hold:

2 k-r-1 2 k-1
Aopyy,x = (B -2ke2) ( i >+(-1)r22r(k-1)-22(5;§§ +2)(r_2)
2 k-r+l
w2tk 42) ( ek ) mee et (D27 2002 02 & (43)
?kr+1
w S By )y
2 [ k-r-1 2 k-1
Aars2,x = %’( r-1 ) +(-1)r22r+1(k-1)—23(f_‘k sz)(][,_‘2 ) +
5, k2-k k-r+1 r-1,2r-1, 2
+2°(5m3 42) | g | meeet(-1)7TR2 (k“-k+2) = (44)

where Pl(k),PE(k) are polynomials of degree r in k.For example,
from (43) and (44) we deduce

= 2k7-6k+6 , A, . = Pk2-Bk+8,

bk ; 4,k
2 3 2
A = K0-9k%+28k-30 , Ag . = k'-11k°+40k-48 ,

_— (x*-18k74122%2-369K+420) /3 ,
(k‘—?1k3+154k2—564k+7?0)/3 ,and so on,

U]

Ag x
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5.Ratios and asymptotic ratios between numbers of

conjugated 6-circuits and numbers of benzenoid rings

in k)-hexes

In order to calculate the asymptotic ratio I"j between the
number of conjugated 6-circuits Rj,k and the total number of
benzenold rings nKj,k ag k— ® ,we need the analytic expres-
sion (37) for Ry ,.From (37) it follows that,irrespective of
the initial conditions of the problem,when k — m we obtain

for a given j (j=>1):
R

 Lim C—i-%— =1, l.e. Ry, v Cpkr] (45)
-— 00 1 I‘l

(by using symbol v for denoting f(n) cv g(n) whenever

1 £ _ 1),

n—-o gin
On the other hand,tor k —» @ ,from (8) we obtain:
k
Kj,k o ary , (46)
therefore,taking into account relations (10),(11) and (38),

the following corollary may be obtained.
Corollary l.We have

R
- r— =} -
Ly = 1i : = 3|1+ —dzs 47
! n (T - 3'( +\]32+4 ) o

k> iy

for any j>1. Kk
R C.kr (o}

K
Infact,klin T'JT%TTK_= T gt .

— i,k k—o (jk+1)ar§(

=£€+ J?+4 =-].]'-(l+ =2 ).D
Viea ¢ 5244 +2) Jouik

Values of the ratio Rj,k/nKj,k = Rj'k/(jlul)xj'k are
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presented in Table 6,including the asymptotic value Lj'
Table 6,Ratio Rj k/nKJ " between the number of conjugated
’ ’

b6-circults and the total number of benzenoid rings

in (j,k)-hexes

Ly
3 \gi 1 2 3 4 5 R -

1 | 0.667 0.667 0.625 0.615 0.603 ... 0.553

0.500 0.520 0.512 0.510 0.508 ... 0,500
0.400 0.420 0.421 0.422 0.423 ... 0.426
0.333 0.1350 0.354 0.356 0,357 ... 0.362
0.286 0.300 0.303 0.305 0,306 .., 0,311

L I VI v ]

R L T I R R R R R R R A A )

10 |0.167 0.173 0.174 0.175 0.176 --- 0.178

P PR trrseerrrarrrreneen e rEe seceesrsas sesr s easa

18

In a previous report  ,the asymptotic 1limit Ly =

1lim Ry k/nK1 k = 1 - 1/¢§ T 0.553 was mentioned (in this
k_’m » 1]

case n = j+1) for helicenes and isocarithmic (1,k)-hexes.

It can be seen that,according to Table 4,for j —

R
R 3,1
L 2§42 P
1 ouul 6 158) FYPY 6 F3 01 6 1= MM | (48)

i.e.,the same masymptotic value as that obtained from (47) for
J > o .

Table 6 showa that in the totality of Kekuld structures
for (1,k)-hexes,i.e. helicenes and isoarithmic polyhexes,more
than half of the benzenoid rings are conjugated 6-circuits,and
that this ratio decreases slowly with increasing k towards LIS

= 0.553;for the (2,k)-hexes,a similar conclusion holds,i.e. the



ratio decreases slowly towards I..2 = 1/2 (an exception is the
ratio 0.5 for anthracene,i.e. for 52_1)-0n the contrary,all
other valuea for this ratio from Table 6 increase with increa-
ging k values towards LJ.Globally,with increasing j,the ratio
Rj,k/nKj,k decreases tending towards 2/j,according to relatien
No.(48),in agreement with the decreasing fraction of conjuga-
ted 6-circuits in linearly condensed systems of increasing
magnitude.

For the numerical data from Tables 1, 3 and 5,a simple
computer program with 111 statements was devised and implemen-
ted on an HP-97 calculator.The listing of this program is pre-
gented in Fig.2,The upper part indicates how the initially
gselected data (J and k) are fed in.The program starts by pres-
sing key A and ends by displaying the ratio Rj,k/nxj,k‘

For retrieving the values Rj.k and Kj.k one recalls keys D

and E,respectively.By simple modifications,one may change the
program sc as to print these three numbers for the final pair
of selected j,k values. Statement LBL B should be ignored.
Alternatively, taking into account that the program uses recur-
rences (13)-(21) for the given j value gtarting from k = 1 to
the given k values one may include printing instructiona for
the values k, Rj'k/nKj,k,RJ.k and Kj,k which are to be execu-
ted in each loop till the final selected k value is reached.
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Fig.2.Computer program for Rj,k/nxj,k’nj,k'and KS.k .

6.Numbers of conjugated circuits in (1,k)-hexes

and corresponding resonance energies

In the case when j = 1,the (j,k)-hexes become (1l,k)-hexes



igoarithmic with helicenes,zigzag catafusenes,etc.,e.g. 1-3
for k = 4.Such systems were also called "fully benzenoid”,
because in each case one of their Kekuld structures has all
rings as conjugated 6-circuits.

The numbera of Kekulé structures in this case form the
Pibonaccl sequence when k increases.We shall now examine the
numbers of conjugated 6-,10-,14-,18-circuits,etc.of such syste-
ms.The numbers of conjugated 6-circuilts can be seen in Table
j for Rl,k'

The numbers R{f; of conjugated t-circuits in (1,k)-hexes
are presented in Table 7 (including all such circuits,not only

the linearly independent ones).

Table 7.Numbersg R{ti of conjugated t-circuits in (1,k)-
’
hexes (upper part) and terms of their circuit.

pelynomial (lower part)

k
t i | 2 3 4 9

6 4 10 20 40 76
10 2 4 10 20 40
14 = 2 4 10 20
i8 - - 2 4 10
22 - - - 2 4
24 - - - - 2
Kl.k 3 5 8 13 21
.y 2%y le lel 20x1 38x1
ot X5 ?xp 5x2 1012 20):2
boly-| ~ xa ?x3 5x3 10x3
e - X, 214 5x4

tal | ~ - - x5 X
I .
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The structure ot Table 7 is quite simple: the same sequen-
ce is repeated,but with shifted k values,for various t values.

11]"12"19 Péc) is meen to bear a clome

The c¢ircuit polynomia
relationship to the upper part of Table 7: it consists of the
sum of all terms under the double line in Table 7.Al1l coeffi-
cients of xi's are half the values of R{f% from the upper
part.

With Randidé's parametrization of Dewar resonance energy

lla,one can calculete with good results the resonance

values
energy (RE) of conjugated hydrocarbons by adding contributions
for conjugated (4m+2)-circuits and by subtracting contributi-
ons for conjugated 4m-circuits.In (1,k)-hexes there are no
conjugated 4m-circuits.For any given k,the numbers R{?z ,R{Tg%
R&%;),and R{%i) of conjugated 6-,10-,14-,and 18-circuits,
respectively,can be easily calculated by recurrence,according
Rt Eahls: fig p(4(ks1)41) _ p(4k+1)
1,k+1 1,k

According to Randid's parametrization,for any given k in
such (1,k)-hexes the resonance energy RE in eV is:

sap{6) (10) (14) (18)
RE = (0.869R; '} + °'245R1,x + 0.100Ry ", ° + 0.041Ry ' ")/K)

We can calculate the asymptotic value of ARE for the dif-
ference between (1,k+1)- and (1,k)-hexes when k — m ,taking

into account that Kl,k/KI,k-l ¥ (1+ 5)/2 = z and that

lim (R) /(k+1)K) ) = Ly = 1 - 1/ V5.

k =
#a obtain
1m ARE » spt— 1im [0.869(1?1 ke1%Ry ) + 0.246(R) | -

K —= 0 l,k X~



= s =

- 2Ry 7)) + O.L(Ry 3 3 = 2Ry o) + 0.04L(Ry 5 - 2Ry . 4)|=

- 1,(0.869 + 0.786271 + 0.100272 + 0.04127%) ¥ 0.591 eV,
The ratio RE/k has thus an asymptotic value of 0.591eV which
is the increment in resonance energy on one further kinked
annelation with an extra benzenoid ring.Actually,this limit is
reached quite soon;on going from tetra- to pentahelicene alrea-
dy the increment in RE is 0.59eV,and it remains constant for
succeeding kinked annelations with one benzenoid ring.

It should be mentioned that Randid's schemoll of calcula-
ting RE considers only the linearly independent circuits;

14 as well as Herndon13

howsver,Schaad and Hess showed that
inclusion of all circuits,as it was done in the present paper,
gives small differences from Randid's treatment and that the

resulted values improve slightly Randid's values,

7.Numbers of conjugated circuits in (j,k)-hexes

The sequence of conjugated 6-,10-,14-,...,-membered circui-

te in (j,k)-hexes with j>1 was investigated;the corresponding

numbers are denoted by Rgsi,ﬂglo) Rgld) etc.,reapectively,and

in general by R(4$+2)
Two examples will illustrate the regult;in addition to the

data for (1l,k)-hexes discussed above,we present numbers R(4m+2)

and R%‘“‘*z) in Table 8.

It may be seen that in all cases,irrespective of the j
value,the sequence of Rgfﬁ*z) contains all values for lower k:
for a given pair of j,k values,the numbers of conjugated (4m+2)

-circuite where m = 1,?2,...,jk+1 take values from one and the
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Table 8.Numbers of conjugated circuits R£4§+2) wnd
*
Rg¢z+2) in (2,k)- and (3,k)-hexes.
9

m
I e 1 2 3 4 S5 & 7 8 9 10
1 6 4 2
2 26 16 6 4 2
2
3 86 52 26 16 6 4
4 266 160 86 S2 26 16 6 4 2
1 8 6 4 2
3|2 50 36 22 8 6 4 2
3 |23 168 100 50 36 22 8 6 4 2

same sequence,lt will suffice therefore to analyze these se-
quences of RST:*Q) in terms of j and m,taking into account
that k has a lower importance.

Table 9 presents the sequences Rgfﬁ+2) in a different arran-
gement ,without repetitions for the same j value,in terms of
decreasing m values:the parameter y= jk+l-m is an increasing
integer starting with zero.

It may be noted that the values Rgfg are at the corners
of the steps,and that on each horizontal line,increments are
constant (cf.Table 9). A formula for these increments in terms
of j, k and m, or of j, k and y, remains to be found. The for-
mula for these increments Dk(j) is similar to that of ri(j} as
presented in Table 4 : D1 = 2, D2 = 4j+2 (exactly as ré),
Dy = 63%+4j+2, D, = 8j3+6j%+48j+2 (differences are at the coeffi-

=2

cient of j , i. e. the second term), etc.



Table 9.Numbers R§4£Jk'y)+6) of conjugated circuits
L]

in {j,k)-hexes. Symbol " means ditto (vertically).

M S w0 1 . \ i [ t [ | 1
dNorz 3 2. 5:6 .7 |8 9 36 1 15 15 14 15
12 4
|
2u|n10
3nlﬂlu
1 | {
4 n n[u
I ]
5rllninllu Z //‘
6"[“‘!!‘"!“!”,142 4(///1
11! GEE;%/
5 oln :"l“ 116 26 L/
k1 I” | o n ' " 15? 86 //‘{
410 Jnln " I“I“l 160 266
12'4' 6 Eilf/L )// // '
|

ulnqnl //

|
|
// / ¥ 7
| s J a o d -
3 ulul u: :-'22'36’ 50V ///‘4///’: ////////
wi " w "100 '168 236/ "l/’//' // ;/ .
7

vty

nlnl L “I s ?8 46 64 82 / ///

| 164 ?78 392 506 ////
, £

win| = u'n'u|uLn'u

204 6 8'10 12&//// o ,://;'////
“"': ": I"| w! 34 56 78 L10(}2122{// /y////
I |

" 244' 416' 588 760‘ 932

S
(%) n - () ~ny — ) N
=

|
"o |||n|n|l|| " " " ! "
{

In Table 9 all numerical values of R(4m+2) = R§4£jk'y)+b)
?

Jak
are the same for j = 1 as in Table 7, and for j = 2 or 3 as in

Table 8.
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8. List of main symbols

= coefficients of polynomial R

'Y
Gk ® A1,k3 +..+A

k+1,k
= two-digit code {L-transform) for catafusenes

= three-digit code for catafusenes in terms of 0,1,2
= i=-th Fibonacci number (F0 =¥ = 1), i. e. number

of Kekulé structures in [i-2]helicene and in all
iscarithmic catafusenes (F, = K, . ,)
i 1,i-2

= number of benzenoid rings in each linear portion
of (j,x)-hexes
= number of linear portions of (j,k)-hexes

= number of Kekul&é structures in (j,k)-hexes, or
generalized Fibonacci numbers

= agymptotic ratio Rj K/nK for k —» @
»

Jak



m = natural integer for conjugated (4m+2)-circuits

n = total number (n = jk + 1) of benzenoid rings in
(jek)-hexes

Ty r&, rk' = numbers of conjugated 6-circuits for (i)-, (ii)-,
and (iii)-type successors, respectively, in the
annelation of (j,k)-hexes with another linear
portion on going from k to k+1

(6)

Rj,x or Ra,k number of conjugated 6-circuits in (jyk)-hexes
(4m+2) ) : . ]
Rj,k = number of conjugated (4m + 2)-circuits in
(jeok)-hexes
RE = resonance energy

s, » 8y, 8}' = number of Kekulé structures for (i)-, (ii)-, and

(iii)-type successors, respectively, in the
annelation of (j,k)-hexes with another linear
portion of j benzenoid rings (from k to k+1)

t = natural integer (t = 4m + 2)
¥y = parameter for Table 9 (y = jk + 1 - m)
z = asymptotic ratio of successive Fibonacci numbers

Ry By = FgolPipy Sor ke



