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Abstract

A method has been developed for the calculation of the number of those
Kekulé structures of a benzoid hydrocarbon which are represented by its
Clar formulas. Although the ratio between this number and the total num-
ber of Kekulé structures tends to be of the order of 0,5 for most existing
benzoid hydrocarbons, special situations are indicated where it may assume

any value between zero and one.



1, Introduction

Since its appearance in 1958 [1], Clar's theory of polycyclic aromatic
hydrocarbons has attracted the attention of both experimentalists and theo-
reticians, A wealth of experimental data, supporting this theory, is collec-
ted in Clar's classical treatise [2], For some more recent experimental

work along these lines see Refs. (3 - 5].

Clar's theory stimulated a number of quantum chemical investigations
whose aim was to examine whether this new concept is in agreement with
(and can be deduced from) quantum theory. These investigations [6-9] re-
vealed several;, to some extent unexpected, connections between Clar’s
theory and quantum theory. Thus, in Ref. [7] it was demonstrated that
those regions of a benzenoid hydrocarbon where the Clar formulas contain
an aromatic sextet, have wave functions similar to benzene, The same re-
gions also give the biggest contribution to the thermodynamic stability [8].
Finally, it has recently been established [9] that the Clar formulas are in
good agreement with the electron densities arising from the occupied mole-

cular orbitals of highest energy.

Another impetus to the study of Clar's theory came from Hosoya and
Yamaguchi [10] who introduced the concept of generalized Clar formulas
and discovered a far-reaching algebra behind them, The algebraic and com-
binatorial aspects of Clar's theory were thereafter the subject of numerous

further studies [11, 12],



2. Clar structures

As is well known [2], Clar formulas of a benzenoid hydrocarbon are
constructed by drawing circles, representing aromatic sextets, in some
hexagons of the benzenoid system. The following three requirements must

be obeyed.

(a) Two circles must not be drawn in neighbouring hexagons.
(b) The circles must be arranged in a way so that a Kekulé structure
can be written for the rest of the molecule.

(c) The formula must contain the maximum number of circles,

For example, the electronic structure of benzola]pyrene is represented
by the three Clar formulas Cy, Cg and C3. The formulas C4, C5 and Cg

are incorrect because they violate rules (a), (b) and (c), respectively.
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Many benzenoid hydrocarbons have a unique Clar formula, Two typical
examples are provided by the recently synthesized tribenzola, g, m]coronene
(C4) [5] and teropyrene (Cg) [13]. In these cases the (unique) Clar formula
is assumed to be a good representation of the real electronic structure and

the chemical behaviour of the molecules.
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If, on the other hand, the Clar formula is not unique (as, for example,
in the case of benzo[a]pyrene, Cq, Cg, C3), then the real electronic confi-
guration of the molecule is understood to be a resonance hybrid of the cor-
responding Clar-type structures. A quantitative resonance theoretical ela-

boration of this idea has recently been offered [14].

From the early days of Clar's theory [1,15] it was clear that a Clar
formula is a shorthand notation for a group of Kekulé structures. Thus,
for example, formula Cj is a simultaneous representation of the four Ke-

In a similar manner, Cy represents the Kekulé structures Ky, K3, K5 and

Kg, whereas Cg3 represents Kj, K5, Ky and Kg:

o




On the other hand, neither C1 nor Cg nor Cg represent the Kekulé struc-

ture Kg:

Kg

Hence, the Clar formulas of benzo[a] pyrene are equivalent to the repre-

sentation of this molecule by means of eight Kekulé structures.

It is evident that each Clar formula with n sextets represents 2" Kekulé
structures. Therefore, if the Clar formula is unique (e.g. Cq, Cg), then

one immediately concludes that it corresponds to 2" Kekulé structures.

From the above example it is seen that if the Clar formula is not unique,
then different Clar formulas may represent the same Kekulé structures.
Consequently, it is in general not easy to find the number of Kekulé struc-
tures which are contained in the Clar representation of a given polycyclic

aromatic hydrocarbon.

Let us denote a polycyclic aromatic hydrocarbon by H; its number of
Kekulé structures by K(H), and the number of Kekulé structures contained

in the Clar formulas by C(H).

Whereas the enumeration of the Kekulé structures is a classical prob-
lem of the topological theory of benzenoid hydrocarbons [16, 17, methods

for the calculation of C(H) seem to be lacking in the literature.

The first attempt towards the determination of C(H) was made by one
of the present authors [5]. In this work, we shall communicate a general

method for the calculation of this quantity.
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3. On the 50 % rule

It is evident from the preceeding considerations that the Clar formulas
may, but need not correspond to all Kekulé structures of a polycyclic aro-
matic hydrocarbon. Consequently, the Clar and the Kekulé structure re-
presentation are not fully equivalent, Moreover, Clar's theory can be inter-
preted as a resonance theory based on a selected number of (significant)
Kekulé structures in which the less significant ones are fully neglected
(This, however, is not the only possible interpretation of Clar's theory
(10, 14]; the real relation of Clar's formalism to resonance and molecular
orbital theory is not yet fully understood). Anyway, from the earliest days
of Clar's theory [1, 15, 18], the question has been posed how big is the ratio
between the Kekulé structures contained in the Clar formulas and the total

structure count.

It is an empirical fact that in all existing benzencid hydrocarbons having
a unique Clar formula, this formula represents some 50 % or more of the
total number of Kekulé structures [1, 5, 15], This observation was recent-

ly named the 50 % rule",

We wish to point out here that in special situations, when the number

of aromatic sextets increases, the 50 % rule may sometimes fail,

As an example consider the following three series of benzenoid mole-
cules: Pp, Qp Ry, n=1;2,3,..., each having a unique Clar formula

with n aromatic sextets.
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In all three cases the ratio C(H)/K(H) decreases exponentially with increas-
ing n, Hence, if n is chosen sufficiently large, the (unique) Clar structure
of P, Qp or Ry represents only a negligibly small fraction of the total

number of Kekulé structures.

4, Generalized Clar formulas

Hosoya and Yamaguchi [10] considered generalized Clar structures
which are constructed by drawing circles in the benzenoid system so that
the conditions (a) and (b) (given in section 2) are fulfilled. Condition (c)

needs, however, not be fulfilled,

The generalized Clar formulas of benzolalpyrene are Gy - Gg. Note
that the "empty" formula Gg is also to be counted among the generalized

Clar formulas.

It has been demonstrated [1 0, 12] that the number of generalized Clar for-
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mulas coincides with the Kekulé structure count. * We shall refer to this

as to the Hosoya-Yamaguchi rule,

The generalized Clar formulas Gy, Gg and Gg coincide in an obvious
manner with the "normal” Clar formulas Cy, Cy and C3. Some of the
other generalized Clar formulas are obtained from Gy, Gg and/or Gg by

deleting some of their circles.

We shall say that G]- is a subformula of Gy if G]- can be obtained from

Gj by deleting some of its circles. By definition G; is a subformula of G;.

Thus, G4, Gn and Gg are subformulas of Gy, whereas Gy, Gg and Gg
are subformulas of Gy, etc. The empty formula is a subformula of each
of Gy, ---, Gg. Note, however, that Gg is not a subformula of either Gy

or Gy or Gg.

An important special case is the following. Suppose that for every
hexagon of a benzenoid system one can find a Clar formula having an aro-
matic sextet in that hexagon, Then all generalized Clar formulas of that
benzenoid system are subformulas of the generalized Clar formulas with
maximum number of circles. The following result is then obvious from

the Hosoya-Yamaguchi rule.

Proposition 1, I all generalized Clar formulas are subformulas of the
"mormal’ Clar formulas, then the Kekulé structure count is equal to the

number of subformulas of the '"normal' Clar formulas,

*
Coronene and related systems are exceptions to this rule, They will be
discussed later in this paper.
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We can reformulate Proposition 1 in a more formal manner, Label the
hexagons of a benzenoid system by A, B, C,---. Then there is a one-to-
one correspondence between a generalized Clar formula and a set of sym-

bols A; B, C,---.

For example, if we label the hexagons of benzo[alpyrene by A, B, C, D,

STy

then the set {B, D} corresponds to Gy, the set {A, C} to Gg, the set {E} to

E as indicated below,

Gg etc. The empty set § corresponds to Gg.

Let the hexagons of a benzenoid system be labeled by A, B, C; ..., Let
this system have m Clar formulas. Let Sy, 8y, -+, S, be the sets of sym-

bols A, B, C, ..., corresponding to the Clar formulas,

Proposition 2, If all generalized Clar formulas are subformulas of the
"normal" Clar formulas, then the Kekulé structure count is equal to the

number of subsets of 81, Sg, -« «; Sy

Note that neither Proposition 1 nor 2 apply to benzo[a]pyrene, This is
because Gg is not a subformula of either Gy or Gy or Gg. In other words,

the set {E} is not a subset of either {B,D} or {B,C} or {A,C}.

Let us illustrate Proposition 2 (and thus also Proposition 1) using ben-

zo[5)helicene (H1) as an example.
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The five Clar structures correspond  to the sets {A,C,E}, {A,C,F},
{A,D,E}, {A,D,F} and {B,D,F}. It is immediately seen that there
are ten two-element subsets: {A,C}, {A,D}, (A,E}, {A,F}, {B,D},
{B,F}, {C,E}, {C,F}, {D,E} and {D, F} and, of course, six one-
element subsets: {A}, {B}, {C}, {D}, {E} and {F}. Together with

the empty set f this gives a total of 5 + 10 + 6 + 1 = 22,

According to Proposition 2 we claim that Hy has 22 Kekulé structures.

5. A method for calculating C(H)

Consider a benzenoid system H. Let its Clar formulas be Cy, Cg, -,
Cp,. Observe that some of the bonds of H are single in all Clar formulas
Cy, Cgy--+5 Cyy. Similarly, some of the bonds of H may be double in all
Clar formulas. For obvious reasons these single and double bonds are

fixed in all Kekulé structures which are contained in Cy, Cg, -+, Cp, and

m
thus play no role in the determination of C(H). Therefore these bonds can

be disregarded as long as we are concerned with the calculation of C(H).

Delete from H all these single and double bonds and obtain the (not ne-
cessarily connected) benzoid system Hped. We will call it the reduced

form of the benzenoid system H,

Hyeq has obviously the same Clar formulas as H. Moreover, by dele-
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ting all the fixed double and single bonds we have eliminated also all hexa-
gons which are empty in the sense of Clar's theory.* Therefore, for every
hexagon of H.,q one can find a Clar formula having an aromatic sextet in

that hexagon, This means that Proposition 2 is applicable to Hyg4.

By deleting all fixed double and single bonds, we have disregarded all
Kekulé structures which are not contained in the Clar formulas Cq, Cg, -,

Cpy. Therefrom we arrive at the following important conclusion,

Proposition 3.' The number of Kekulé structures of H is equal to

red
the number of those Kekulé structures of H which are represented by the

Clar formulas, In other words, C(H) = K(Hpeq).

For example, the reduced form of benzo[a]pyrene is chrysene (Hy):

moe

Hy
According to Proposition 3, C(benzo[a]pyrene) = K(chrysene) = 8,

As another illustration consider naphtho(l, 2, 3, 4-ghilperylene (Hg),

eo
Ll

H3

whose reduced form is just the benzoid hydrocarbon Hy, examined after

*
Coronene and related compounds are exceptions, see the subsequent sec-

tion.



Proposition 2, It has been deduced that Hy has 22 Kekulé structures,

Therefore C(Hg) = 22.

As a matter of fact there are numerous general and efficient methods
for the enumeration of Kekulé structures of polycyclic aromatic hydro-
carbons [16,17]. Furthermore, for a large number of benzenoid systems,
there exist explicit combinatorial expressions for K(H). Hence, by means
of Proposition 3 the finding of C(H) is reduced to a previously solved prob-

lem of the finding of K(Hred)-

Combining Propositions 2 and 3 we arrive at the main result of the

present paper.

Let H be a benzenoid system and Cqy, Cg,--+, C,, be its Clar formu-
las, Let each Clar formula contain n aromatic sextets, Label the hexa-
gons of Hby A, B, C,---. Each Clar formula C; of H can then be repre-

sented by an n-element set S; of symbols A, B, C,««» (i=1,2,..., m),

Proposition 4, The number of C(H) of Kekulé structures which are
contained in the Clar formulas of H is equal to the number of subsets Sy,
Sgy e+, Sy

The above proposition provides an efficient and fully general proce-
dure for the calculation of C(H). In order to illustrate it, we shall deter-

mine C(benzo[a]pyrene).

The sets S1, Sy, S3, corresponding to the Clar formulas Cq, Cy, C3
are {B,D}, {B,C} and {A,C}. The respective one-element subsets are
{aA}, {B}, {C}and {D}, and the zero-element subset is f. This gives a

total of 3 +4+1 = 8 subsets, which, of course, coincides with the value
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determined in the example after Proposition 3.

As another example we determine the number C(H) for coroneno-coro-

nene (Hy).

The two Clar formulas of Hy are described by the 6-element sets
{A,C,G,J,K,M} and {B,D,E, H, 1, N}. Fach set has 2% subsets (including
the empty set). Since the two sets have no common elements, their only
common subset is the empty set. Therefore there are 26, 26 - 1 distinct
subsets of {A,C, G,J,K,M)} and {B,D,E, H, L, N} which means that C(Hy)
6

=2°+26.12127, It is worth noting that K(Hy) = 364,

6. Coronene - an exception

Ag already mentioned, coronene (Hg) and molecules related to it (e.g.

Hy) are exceptions to Proposition 3.

This occurs because the two Clar formulas for coronene are {A,C, E}
and {B,D, F}, and thus the hexagon G is empty. Nevertheless, Hg has nei-

ther fixed single nor fixed double bonds. Therefore the reduced form of Hy
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should coincide with Hg, what contradicts the fact that hexagon G is empty.

Thus, in the case of coronene-like systems, C(H) cannot be determined
by means of Proposition 3. On the other hand, Proposition 4 applies to all

benzoid systems without any restriction,

An illustration of the calculation of C(H) of a coronene-like polycyclic

aromatic hydrocarbon has already been given in the previous section.

The case of coronene is fully analogous. Since the sets {4, C, E} and

{B,D, F} have no common elements, C(Hs) = 23 +23 -1=15,
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