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ecasily be found in a textbookl of chemical thermodynamics; for
example, independent (thermodynamic) state variables, independent
(chemical) reactions, independent constituents, and the degree
of freedom in the phase. Horiuti and Nakamura2 have pointed
out that in steady states the number of independent reaction-
pathways is equal to the subtraction of the number of independent
reaction-intermediates from the number of elementary reactions.
It has been shown3 that chemically reacting systems in which
every coupled reaction reaches equilibrium can be expressed as
algebraic groups with finite rank (= the maximum number of
independent reactions). The examples above-mentioned suggest
that the algebraic properties of chemical systems, as distinct
from the physico-chemical characters of individual substances,
should be widely investigated. The present note is devoted to
an introductory study of the properties of independence/
dependence that can be found in chemical reaction theory.

The abstract properties of linear dependence for a given
finite mathematical set have been studied by Whitneyq, who first
named such a structure a matroid ("matrix" and "oid").

Following his definition of matroidal structure, we will develop
the theory of chemical matroids. This mathematical theory will
enable us to essentially understand the nature of independence/

dependence in chemical fields.

II. Definition of Matroids

Let E be a finite set of distict elements, and let 2E be the
family of all subsets of E; ZE = { X | XEE) : This set ZE

contains the empty set @ . The number of elements in a subset
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2 by ZIEI ¥ Assume

X is denoted by |X| , and that of 2
that any X of ZE can be determined whether it is dependent or
independent; methods suitable for the determination are
characterized by the nature of the elements of FE.

E

If a nonempty subset F_ {( € 2~ ) fulfills the following

I
postulates, called the independence axioms, then we can say that
E has matroidal structure (or exactly saying, the pair of E and

FI is a matroid on E)

(i-1) The empty set is independent: that is to say, @ ¢ FI.

(i-2) Any subset of an independent set is independent; that
is, if X & Y and ¥ € F; , then X & F,.

(i-3) If there are two independent sets X and Y such that
iyl = IX{ + 1, then X U {y)} for y o ¥ - X is
independent: namely, if X, ¥ g F‘1 and Yl > IX]

then there is an element y in Y - X for X Y { v} € Fo.

By use of the definition that a base is a maximum independent
set, it can be dermved4 from the axioms (i-1,2, 3) that the set

of bases, Fy, satisfies the following base axioms:

(b-1) The empty set @ is not a base; @ ¢ FB.

(b-2) No proper subset of a base is a base; X CY, Y & FB
=y X & F,.

(b-3) If X and Y are bases and if x is an element of X, then
there exists an element y in Y such that (X - { x} }U

{y) is a base; X, ¥ €F,, x € X =2 3y eXe X =
txyy U ty) € Fg-

Inversely on the basis of the definition that a subset of F
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is independent if it is contained in a base, the axioms of (i-1,
2, 3) can be obtained from the set (b-1, 2, 3):; in other words,
the two axiom sets are equivalent. This equivalence situation
is valid for every pair of the postulate sets including the rank
postulates and the circuit postulates in the following; if one
of them is adopted as the postulate of matroids, then the
others can be considered to be theorems.

The rank of a subset X, denoted by rk(X), is the maximum
number of independent elements of X. The definition of

matroids in terms of rank is thus given by:6

(r-1) 0 £ rk(x) IX] for x € E.

g
(r=2) If X € Y (€ E), then rk(X) £ rk(Y).

(r=3) rk(x U y) + rk(x N ¥) & rki(X) + rk(Y) for X, Y & E.

A minimum dependent set C € FD is called a circuit, where
FD is used to designate the family of dependent sets or all
subsets of E not included in FI. It becomes clear that
cireuits: E'FC ) fulfill the following axioms because no

independent set contains circuits:6

(c-1) ¢ ¢ F..
(c=2) XCV¥, Y €F, == X ¢Fc.
(c=3) X, ¥ eFC,xean, YyE€EY-X==5 2&E€F,:y €12

< xUvy-{xy.

ITIT. Chemical Matroids

(molecular matroids) We consider a set of Ny molecular

species in a chemically reacting system: By = { My ME2) e

M(nM)} % Let us assume that a subset K of EM is independent
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if no reaction-equation (stoichiometric) can be made up of
elements of the subset, and dependent otherwise. By means of
the matrix language it is easily shown that the stoichiometric
independence with respect to chemical elements satisfies the

postulates (i-1, 2, 3); when X  is represented by a matrix X

M M

whose columns are the composition matrices of the molecular
species with respect to the chemical elements, the dependence

means that there is a soluticn qj for the matrix equation quj

= 0, where the column matrix qj contains at least one nonzero

integer. We will call E, (or the pair of E

M and FI(EM)} a

M

molecular matroid.

Example 1. The molecular species in the Nernst chain reaction
mechanism
Ccl + H, — HCl + H" = 91
H+Cl, — HCL +Cl" =q,,
are set as E, : E. = {H, Cl, HCl H Cl } , and its matrix
M M 2 2
representation Hz C12 Hel H c1
EM = (;2 0 1 1 0:) H
0 2! 1 0 1 Ccl

We obtain the following.
FL(Ey) - Fp(B: & {Hy) . {c1,} . {ma} , {u] fa).

Fo(Ey): [H, Cl,} . {H, HC1} , {H, c1y , {c1, ncl},

{ci, B}, {nc1 u}, {nc1 cr}, {[® c1}.
Fo(E,) : {H, H}, {c1, c1}, [®, cl, HCl} ,{m, HCl C1],
{e1, wCl W}, {HCL H cl}.



PolE,) = FulBds (B, €, #}, {8, @, e}, {H, € 8},

i, = ell, {o, mea o1}, {6, § €1},

{s, c1, =m1 H}, {H, €1, wel c1},{u, ci, n c1},
{w, ®mC1 W c1}, {c1, mc1 m ci},
{m, c1, ncl H cl}.
Note: |E,| = n, =5, 2° = 32, rk(E,) = 2
g Ml M E é M S
(reaction matroids) Let a set of reaction equations ORI
an be given: E, = ta; -« qno b We can say that a

subset XO ¢ EO) is independent if there is no linear

relation X =0 (pj # 0, a column matrix with nonzero integerg

obj

, and dependent otherwise; this definition (stoichiometric
independence with respect to molecular species) clearly fulfills
the postulates (i-1, 2, 3), and corresponds toc Jouguet's

criterion5 that is used commonly by chemists. The following

example will show that pj can be considered to be reaction
-

pathways (or routes). BO is referred to below as a reaction
matroid.
Example 2. The eguations q(l), q(z), and Qe = H2 + C‘l2

—+ 2 HC1" (overall reaction) in the Nernst mechanism are

chosen as the members of EQ L EQ = {q(l) q(z) Poes }. Then

the circuit of E_. is E_ only; that is, g

Q 0 ov - Y1y * 92

Y Y2 Yo
E. ={-1 - H ’ . = 1
B, 0 1 " Py
0 -1 -1 C12 I
1 1 2 HC1 -1
1 <1 ol n
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Example 3. The six circuits in Example 1 can be interpreted
as reaction equations; then we use them as the elements of EO:
Eg = {ql - - - 4} . where
- " " - " "

g, = "Hy — 2ZH" 5 g, = Cl2 —3 2el";

q3 = ‘H2 + Cl2 — 2HC1" = s (overall reaction),

q,:l = "H2 + 2C1 — 2HCLI", q5 =" C12 + 2H — 2HC1l",

Gg = "Cl + H -— HC1l", and its matrix representation

4 9 93 94 95 Y

EQ - =1 0 -1 =1 0 0 H,
0 s ¢ =1 0 =1 0 Cl
0 0 2 2 2 1 HC1
2 0 0 0 -2 =1 H
0 2 0 =2 ] -1 cl

FpEp): {a) 9y a3}« {9 9 9} {9 9 9}
tay 9 96} {9 9 9} {1 93 %)
{9y 9y 95} {9 9% 9} {9 93 95}
(92 93 %Y} {9 94 95} {92 93 9}
{93 9 95}/ 193 94 96} {93 95 Y} -

la, a5 494} -

Fo(Eg): {d; 93 9%+ {97 94 9} {92 93 9%~
19 9 %) {9 9 93 9} {9 9 9 9
{93 94 95 Y4 -
Note:r rk(Ey) = 3, qy + qy = 43, 9 * dg = 930 9y * 9y * 29
=dy, 94 = 9; * 295, 9 = 9y * 29g, 9) * 9, * qy =g

93 * 94 = 95 * %-
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(reaction-intermediate matroids) Molecular species such as

ions and free radicals, which are produced but not accumulated
in chemically reacting systems under consideration, are called

reaction intermediates. We assume that XO (< Eo) is a set

of elementary reactions that gives an overall reaction
equation 9oy in a steady state: in other words, the matrix

equation X (a reaction pathway Pj # 0) is given.

ng = 9ov

éO and 9oy C©an be decomposed into composite matrices as

[P
L}
o
=]

o,
Xe
]
W0

Q 2~(Ql"l “ov ZovM

261 ovI

where the subscript M is concerned only with the molecular

species in P and I with the intermediates. Note: ZQI is

an np X IXQ| matrix, where ny is the number of intermediates.

The matrix equation then leads to = 0 because the

i(QIEj = Yovr

reaction intermediates of XQ must vanish in the overall

reaction. The definition of independence/dependence for a
set of intermediates is thus established, and identical with
that of Horiuti and Nakamuraz. The number of independent
reaction-intermediates is equal to the number of independent

column matrices in the transpose of X or to the number of

or '
independent linear forms of qj's with constant coefficients pj.

Example 4. For the Nernst mechanism (Example 2), X =0,

o1f5

where

91y 929

EQI = ( 1 = ) H , Ej = ( l)
=1, 1 Cl 1
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Only one of the intermediates is independent.

Example 5. Any circuit containing 95 (= qov) in FC(EQ) of
Example 3 represents a reaction pathway for Aoy Then in

{ql 9, 49y q63 , for example, two reaction-intermediates

. ! 3 .
are 1ndependent because of two linear relations

{thermodynamic matroids) Let ET be a set of thermodynamic

state-variables of a gas of 1 mole: FEj = {p V T T
{pressure, volume, temperature). Clearly, ET becomes a
matroid after the thermodynamic consideration of independence/

dependence (rk(E_) = 2 ); this is an example of non-matric

ik
matroids. Only one circuit is given by { p Vv T} , which
suggests the equation of states (e.g., pV = RT).

Let ET = { p T S } be a set of chemical thermodynamic

variables for a chemically reacting system (5 , the extent of
reaction); this also becomes a non-matric matroid with respect
to chemical thermcdynamic independence. Note that the set

{ p VvV T ¥ } is not a matroid because the postulate (i-3)

fails.
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(chemical dual matroids) We denote a dual matroid of E by

E*, E and E* are duals if and only if there is a one-to-one
correspondence between their elements such that bases in one set
correspond to base complements in the other:4 FB* = { E-B

B & FB } . The dual of the independent family FI is defined

byFI*={E—X| BSx,BeFB}.

Example 6. For Example 1, Fy* : {81 n c}, {Cl2 H Cls,
fc1, mcl w}, {H, B c1}, {B, HCl Ccl}, {H, ci, cl}
{v, c1

, HY. {H, cl, HCLY .

The elements of FI* (i.e., the independent sets of the dual
matroid)are given by all of the subsets of the above bases.

Note: Every matroid has a dual.

IV. Properties of Chemical Matroids

Referring to some of the abstract theorems of Whitney's
paper, we make a summary of chemical interpretations of
properties of matroids, which is very useful in a study of
independence/dependence in chemical fields.

1. The definition of nullity of X ( € E) is given by nl(X)

= |X] = rk(X):; for any X, nl(X) 2> 0; if X CY , then nl(X) <
nl(Y); rk(E*) = nl(E), nl(E*) = rk(E). X is independent, or
the elements of X are independent,if nl(X) = 0; otherwise X
and its set of elements are dependent. In terms of these

statements we can clearly define the concept of independence/
dependence of the elements of X in chemical fields; for
example, independent molecules, independent reaction-equations,

independent reaction-intermediates. The number of
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independent elements of X is equal to rk(X). Note: Any subset
of a matroid is a matroid.

2. y is dependent on X if rk(X U {y)} ) = rk(X); otherwise
y is independent of X. By this methed we can check whether
an element of a chemical matroid is dependent on or independent
of a subset of the matroid.

3. The rank of a matroid equals that of a base; rk(E) =
rk(B). X is a base in E if and only if rk(X) = rk(E) and
nl(X) = 0; if X and ¥ are bases, then [X| = |yl . By means
of these statements we can count the maximum number of
independent elements of a chemical matroid in question. In
the case of thermodynamic matreoids, the maximum number
corresponds to the degree of freedom (See 5. below). Note:

A base is a maximum set containing no circuit; X is independent
if and only if it is contained in a base.

4. As Examples 2 and 3 show, it is of great importance in
chemical theory to study the properties of dependent sets,
especially of circuits. Dependent sets of E, are obviously
interpreted as stoichiometric reaction equations in chemistry;
for example, the dependent set { H, Cl1 H } in Example 1 can

2
be rewritten as H, + Cl — 2H + C1,. The circuits of E

2 2 2 Q
containing an overall reacticn can be considered to be minimum
reaction pathways. (See Example 2.) Note: The term
"reaction pathway (or route)" is used by chemists as a set of
chemical reacticon steps that gives an overall recaction in
question.

We obtain §M% 0 (q. # 0 ) and X

j S 2ok

and XQ are dependent sets. The first equation means the

0 (Ek # 0) if XM
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conservation of chemical elements in the reaction equation qj,
and the second the conservation of molecular species in the

reaction pathway Py -

5. We directly obtain rk(E*) = |E| - rk(E) from the
definition of the dual matroid E* of E. This equation can be
interpreted as: For a molecular matroid, ny, - rk(EM) is equal
to the maximum number of independent reaction-equations. For
a reaction matroid, nQ - rk(EQ) equals the maximum number of
independent reaction-pathways. The number of

independent pathways for steady states is given by the
subtraction of the number of independent reaction-intermediates
from the number of elementary reactions, i.e., by ]XQ|

XQIt), (t, transpose). The last has been found by Horiuti and

- rk(

Nakamura,2 who got it from the matrix algebraic point of view.

Chemical thermodynamics texts (e.g., Ref. 1) often describe
the following relation; ¢ - r' = the number of independent
constituents, where ¢ = the number of constituents, and r' =
the number of reactions in a chemical thermodynamic system; this
is just the equation above-mentioned.

6. E is said to be separable, if it is possible to djvide
the elements of E into two groups, E(l) and E(Z)' each
containing at least one element, such that rk(E) = rk(E(l,) +
rk(E(Z)J.4 Separability in other words means that the groups
have no interaction between them, and therefore each group can
be dealt with separately. We hereafter consider chemical
matroids to be non-separable.

If a dependent subset X, (or Xo) is separable, then it

M

contains molecular species (or reaction equations) having no



- 215 -

relation to the reaction (or the pathway) of the set; for

example, the set { H, Cl, H} in Example 1 is separable and

2
is decomposed as H2 —» 2H and Cl2 — Cl2 without
interaction of the chemical elements. (The union of a set X

and an element y is separable if y is independent of X.)

Note: Circuits are non-separable.

7. There exists only one circuit C, x € C g B U { x} , for
x ¢ B € F,; this circuit, called a fundamental circuit of x
with respect to a base B, is denoted by C(x | B) ={ y | BU {x}
- {y} € FB} 4 The number of fundamental circuits of E

for x €¢E - B is nl(E).

Example 7. For Example 3 we have
Gla, L {9 92 9317 = 19 95 7).
Clag [ {9y 9 9310 = {9 49; 45}
Clgg (19 92 1) ={9% % 9 %)
Oty [ {9y 95 9 ) =9y 9495 91 ste:

If an element y is added tec a base, then in the set there is

necessarily a dependent set. Note: For a circuit C, nl(C)
> 0, while, x G ¢ implies nl(x) = 0; |c| -1 < Bl

because the subtraction of one element from a circuit yields an

independent set.

V. Simple Applications

(solution of indeterminate problems in stoichiometry) Let us

consider the following reaction equations:
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2KC103 — KC1 + 20 + KClO4 ’
,'iKClO.s — 2KC1 + 50 + KClO4 "

4KC103 — 2KCl + 40 + ZKClO4 , ete,

Fach equation that satisfies stoichiometry involves the same
kind of reactants and products as in the others:; in other
words, the stoichiometric coefficients of the molecular species
are indeterminable. Such examples are known as indeterminate
problems by chemists. This situation easily become8
understandable when the circuits are made up of the chemical
species. (Recall that circuits can be uniquely determined.)

In this example we set E, = { KC103 KCl © KC104} , and

M
obtain the set of the circuits of EM’ EQ = { 9; - - - q4} i
where q; = “KCJ.O3 — KC1 + 30", q, = “4KC103 —3 3KC104 +
EE€l™, q3 = “KClO3 + 0 = KClOg"r a, = "KC1l + 40 — KC104“.

Any stoichiometric equation in the example is thus expressed

as nq. +mgq, (n, m, integers:; q. and g,_ (j # k) are bases for
Kk 9 3 k I

J
EQ) because rk(EO) = 2.
(Analysis of the Nernst chain reaction) All of the non-

separable dependent sets of Example 1, of which the number is

at most 11, is set as elements of EQ = EQ = f ql

The first six elements Qe = = - 1 9

TR

g are the same as in

Example 3. The other qj‘s are indeterminable, and are written

below, for instance, as:

95 2

q8 = H2 + 2Cl2 — 2HC1 + 2C1"%,

”2H2 + Cl, — 2HCl + 2H",
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Gy = “H, FEL ~§ BEL+HF =um .

91g = "Cl, + H — HCL + Cl" = q,,

qll = "H2 + C12 —3 HC1 + H4C1l".
Note: rk(EQ) = 3, rk(EQ*) =8, 9, =4d; td3, dg = d, + d3, 24,
=dp - qy * d3e 2975 = "9yt Ay todys 29y = qp + 9yt g5

The reaction pathways (or the nonseparable dependent sets of

EQ) containing d5 (=g

dgr 93 = g + Qgr =+ v 93 = 9 + q, + 2q6, . « .« , in which

ov) in linear form are given by 4y = 9 +

the second form is just the Nernst mechanism.
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