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Genesis schemes provide a quicker and more complete summary of the
information in a mass spectrum. They are little used by mass spectroscopists,
and are completely absent in introductory texts on mass Spectrometry.l
The author of this paper has required all his students to construct probable
genesis schemes for every mass spectrum and has found such schemes to be
useful aids in student training in interpretive mass spectrometry. Thus
this summary of the graph theoretical properties of genesis schemes as
applied to a complicated steroid molecule is presented with the intent to

; ; ? 2
encourage their use in student teaching.
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Genesis Schemes
A genesis scheme should be constructed for a complex mass spectrum

to show pictorially the probable or possible origin of the various daughter

ions. These pictorial schemes are known in mathematics as acyclic digraphs

(directed graphs without rings that result from unidirectional arrows to

form a closed clockwise or counterclockwise cycle). Since there are

some properties of digraphs which are worthy of discussion in regard to

their application in computer interpretation in mass spectrometry, some

relevant terminology is now intrcduced?’AConsider Genesis Scheme I (for the

12eV mass spectrum 1). LT this scheme is complete, then the point (vertex)

corresponding to the molecular ion (m/z 476) is called the transmitter,

points corresponding to m/3 433, 374, 373, 341, 314 and 226 are carrier

points, points corresponding to m/z 416, 356, 313 and 296 are ordinary points,

and points corresponding to m/z 461, 401, 338, 281, 278, 253, 242, 240, 229,

211, and 200 are receiver points. The number of arrows (edges) into a point

1 is called the indegree id, of that point and the number of arrows out

of a point 7 is called the outdegree od

P P
q is given by:iglidi =

53 the number of arrows (edges)
iél Odi = q where p = total No. of graph points.

Thus transmitter points have idi = 0, carrier points have idf = Odi =1,
and receiver points have gdi = (. Every digraph has a defined vertex set
[P= {v1,v9, ...}] and a directed edge set [Q={(Da,vg,...}] having ordered

vertex pairs (va,u ) determined by some relation (e.g., a genesis scheme}.
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Within the framework of set theory, a relation ¥ in a set S is called
a partial order (or order) on S iff, for every a, b, c € S: (i) a £ a
(reflective criterion); (ii) @ b and P 5 g implies ag=b (symmetric
criterion); and (iii} @ < b and b <« ¢ implies a % ¢ (transitive criterion).
The set S together with the partial order, i.e., the pair (8, %) is called
a partially ordered set. If @ = b in an ordered set,then it is said that «
precedes b and that b follows @¢. The ion peaks in a mass spectrum of a
compound and the associated genesis scheme represents such a partially
ordered set (e.g., I and Scheme T). An element g ¢ 8, is the first element
iff @ £ & for all s £ 3, and an element b ¢ § is the last element of § iff
g « b for all 8 € S. Scheme I has only the first element m/z 476 and no
last elements. An element ¢ € S is maximal if no other element follows a,
and an element b ¢ S is minimal if no other element precedes b. In Scheme I,
ml/z 476 is a minimal element and m/z 461, 401, 338, 281, 278, 253, 242, 240,
229, 211, and 200 are maximal elements. Let A bea subset of a partially
ordered set S (ACS). An element m € S is a lower bound of A iff m < X
for all x e A, i.e. if m precedes every element in A. If some lower
bound of A follows every other lower bound at A, then it is the greatest
lewer bound (glb) or infimum of A [inf(A)]. Similarly, an element M ¢ A
is an upper bound of A iff x 4 M for all x ¢ A, i.e. if M follows every
element in A. If some upper bound of A precedes every other upper bound
of A, then it forms the leas® upper bound (lub) or supremun of A [sup(A)]
lon peaks m/z 416 and 401 is a subset in Scheme I which has m/z 476 as a

glb and m/z 356 as a lub.
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Given a relation R on a set S of |P |= P points which have been
labeled 01,02,...,Hp, the adjacency matrix S(R) is defined to be the p x p
matrix whose (¢,7) entry is one if the ordered pair (vﬁ,vj) is in R and
zero otherwise.5 Thus the adjacency matrix for the graph of Scheme I is
shown in Matrix L. For example in Scheme I, the 476 ion goes to the 461,
433, 416 and 374 ions, and therefore this row has a 1 in these corresponding
columns in Matrix I and 0 in the remaining columns. A walk in a directed
graph is an alternating sequence of points and arrows (directed edges) such
that each arrow is directed from the point preceding it tc the peint
following it. A walk may be denoted by its point sequence, e.g., LD ...un,
where the intervening arrows are implied; the number of occurrences of
arrows in a walk is its length. The point v is said to be reachable from
the point u# if there is a walk from u to ». The length of the shortest

walk from

¥ to v isthe distance between u and v . A semiwalk joining u

and ¥ is an alternating sequence of points and arrows, uj,xl,vg,mQ,...va
2

where xy is either the ordered pair (ui’ui—I) or (v.

z+]’ui)' A spanning

walk or semiwalk contains all the points of 8. A spanning tree from a point
v consists of an acyclic spanning semiwalk or walk from v, and spanning tree
te a point v 1is an acyeclic spanning semiwalk or walk to ».

The number of walks of length one is the sum of all the ones in the
adjacency matrix S5(R); e.g., the number of walks of length one is 24 for the
graph of Scheme T which is equal to the total number of arrows im it. Tn
general, the number of walks of length n is the sum of the numbers contained
in the matrix obtained by raising the adjacency matrix to the ngh-pawer
(Sn), and the number of walks of length n from point i?i to point v.f in S

equals the mnumerical value of the (i,j) entry in s". Thus the number of
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walks in Scheme I of length two (i.e., the numerical sum in Matrix 1I) is
21, length three is 17, length four is 11, length five is 1 and length
six or greater is 0.

The reachability matrix N(S) has "i,;' =1 1f u,,’r' is reachable from v;
and nij = 0 otherwise. For the digraph of Scheme T, this is given by
Matrix IIT. Letting srfij denote the (,7) entry (ith row, jth column)
of s", then n‘ij =1 for © # j if and only if S?,}' >0 for some n; note
that nii =1 for all Z. Since the molecular ion, m/z 476, can reach all
other ions a 1 appears in every column of the 476 row in Matrix II1;
whereas, the m/z 461, 401, 338, 281, 278, 253, 242, 240, 229, 211, and 200 ions
can only reach themselves and thus their corresponding rows have only one 1
in matrix diagonal position and the rest 0's. In the disiance matric
D(S) the dij entry is the reachable minimum distance from v; to vj‘ For
i #£ j the dij is the value of sr;:j >0 for the smallest n of S", if any
exists, and « otherwise; d’ii = 0 for all <. Matrix IV is the distance
matrix for the labeled digraph of Scheme I. In D(8) (Matrix IV) a 0 will
appear in the diagonal positions and there will be an = at each corresponding
matrix position in which a 0 appears in the N(S) (of. with Matrix 1II).

In Matrix IV there are 24 ones corresponding to the number of walks of

length one in the digraph of Scheme I. The number of spamning trees of a

labeled digraph S from one of its points can be calculated from the matrix

ni(s) = 1d(8) - S(R) where id is the indegree matrix which contains the

indegrees of the points of S on its diagonal and 0 elsewhere. The value

of the cofactor of any element in the jth column of M{ is the number of different
spanning trees from U'}-. Matrix V gives M?: for the digraph of Scheme T.

Since the indegree for the m/2.476 point is zero, the cofactors for all the

columns except the m/z 476 column are zero; for any element in the 476 column,
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the cofactor is 2-2.2 = 8, and thus there arec 8 different spanning trees from the

m/z 476 point. Similarly, to compute the number of spanning trees to each
point in a graph, we define o0cd(8) to be the matrix with the outdegrees of
the points on its diagonal and watrix MD(S) = 6d(S) - S(R) and calculate
the cofactors of elements in rows of MO. These matrices convey mass
spectral information concerning parent, daughter, granddaughter, et cetera
ion relationships in lattice form amenable to computer programming.

In mass spectral interpretation, the first step in the analysis of a
mass spectrum is to determine the parent ion or ions for each ion in the
spectrum (except for the molecular ion). All ions in a spectrum form a
set S (S for spectrum) which are points in a digraph of a genesis scheme.
This process comprises the finding of all subsets (Si) of § which are mechan-
istically related. The system of all statistically possible subsets (A;)
of § is called the power set of S: P(3) = {Ai: Ai € 5}. In Scheme 1,
s=1{m/z 476, 461, 433, 416, 401, 374, 373, 356, 341, 338,314, 313, 296,
281, 278, 253, 242, 240, 229, 226, 211, 200} has |S| = 22 elements; the
power set of 8, P(S), is all combinations of the elements of S5 and has

22 1 512

|P(S)1 = 221 (]E=D m)} = 2 = 4,194,304 subsets of S as elements.
Fortunately, not all statistical possibilities need to be considered as
general mechanistic principles allow the mass spectroscopist to narrow

the number of subsets. For example in Scheme I, the m/z 229 ion cannot
derive from m/z 240 because loss of 11 atomic mass units is impossible for

a typical organic compound, but it can derive from m/z 314 by loss of the
stable neutral C3HgCOCH3. Thus Ay = {m/z 240,229} is an element of the

power set P(S) but is mechanistically unacceptable and A, = 81 = {m/z 314,

120} is an acceptable element of P(S) and is an interpretable subset of S since
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elements are mechanistically related. In Scheme I the total number of
interpretable subsets of § is equal to the sum of all the walks of length
1,2, . . . which is 24 + 21 + 17 + 11 + 1 = 75, A subset reduction from
4,194,304 to 75 represents an exemplary intellectual task performed by

a mass spectoscopist in his or her interpretation of a mass spectrum fora

large molecule such as steroid I.
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I The reader can easily verify all the following relationships with the
simple directed graph (@) below which has the point set S = {1,2,3}, the
power set P(S) = {9,(1),(2),(3),(1,2),(1,3),(2,3),{(1,2,3)}, three walks
of length one, one walk of length two, two spanning trees (b andc)

from point 1.



