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1. Summary

In analytical chemistry chromatography is a well-known method for sepa-
ration of a mixture into its components. The separation is accomplished by
the distribution of components of the mixture over two phases in close con-
tact with each other. There exist many variations in the method of separa-
tion.

Since there is a large number of parameters in the process involved, we
have the possibility to optimize the separation. Important parameters are
temperature, pressure, flow velocity and packing of the column. The follow=
ing assumptions have to be made to reach a reasonably (one dimensional)
simple model:

1. Temperature and flow velocity are constant in time and place.

2. Longitudinal and radial diffusion are neglected.

3. Exchange of matter in adsorption is instantaneous. )

An elegant use of wave theory was made by Rhee, Aris & Amundson . Their
method is reviewed in sections 2.1 and 2.3. Combining a one-dimensional
transport equation with a certain expression for the adsorption, they were
able to derive a new coordinate system, similar to Jacobi's ellipsoidal
coordinatesl). With this system a convenient description of the separation
process can be given. The dynamics of a single component in a chromato-
graphic column under the assumptions as above were described by Smit, Smit
& De Jager.5) In this paper results are given for two component systems.

2. The model equations

2.1 The Riemann problem

Consider a chromatographic column with constant cross section. Apart

from the carrier gas there are two chemical components, Ai' A The concen-

2°
tration in mobile and solid phases is denoted by ¢, resp. n, i=1,2; each
in moles per unit volume of their own phase. The void fraction of the

column is a constant € (0 <e <1). The total concentration fi of component

Ai satisfies
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(2.1) f. =ec, + (1-e)n,.
i i 1

Since the adsorption process is quite complex we cannot describe its
dynamics in exact equations and, therefore we make simplifying assumptions.
The concentrations n, are generally considered to be nonlinear functions of

i
mobile phase concentrations;

(2.2) o ni(cl,cz) i=1,2.

These relations are assumed to hold for all positions at any time and are
called adsorption isotherms. We will discuss this in more detail in section
2.2

Because of the constant cross section the above process can be de-
scribed in one space variable. The incompressible mobile phase is supposed
to have a constant velocity u. Consequently, the flux qi of component Ai
satisfies qi = ucci. The mass conservation law for component Ai over a seg-
ment (zl,zz) of the column implies

z

2
d o
(2.3) 3t J fi(z,tsz + qi(zz,t) - qi(zl,t) = 0.

1

I1f fi and q; are continuously differentiable this yields in the limit

of, . 3q
t

Let Z be the characteristic length of the column. Substitution of the ex-
pression for the flux a4y and introduction of new dimensionless independent

variables x = z/Z and 1 = uet/Z leads to the transportequation

Bci afi
. ——f mm—= i=1,2,
(2.4) x Tt 0 i :
Bfi
Under the assumption that the 2 x 2 matrix F = (5270 has two distinct real

eigenvalues for all values of the arguments (cl,c;), the set of equations
(2.4) is called a quasilinear hyperbolic system. In chemical terms this as-
sumption corresponds to two solute components flowing with different velo-

cities through the column, which means separation into pure components
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after a sufficiently large time interval. In order to have a well posed

problem we also need suitable initial- and boundary conditions,
c,=c." at 1=0 ("initial")

(2.5) i=1,2.

c, = cj at x =0 ("entry")

The problem (2.4) with (2.5) can be solved with the theory of Riemann in-
variants. When there are more than two components, the existence of so-

called generalized Riemann invariants is not guaranteed for these quasi-
linear hyperbolic systems. However, with certain restrictions on the ini-
tial- and boundary data a solution exists. Problems that can be solved in

this way are also known as Riemann problemsB).

2.2 Adsorption isotherms

In section 2.1 a functional relation (2.2) was assumed between each n,
and c1, CZ' This relation is usually called the adsorption isctherm. A fre-
quently used, nonlinear expression is the Langmuir isotherm. By assuming
adsorption equilibrium at any placé and time we have for each component
separately that rate of adsorption equals rate of desorption. The adsorp-
tion rate of Ai is proportional to the product of concentration ey and free
adsorbing area of the stationary phase, where the total adsorbing area is
scaled to 1. The rate of desorption is proportional to the fraction of area

occupied by Ai. For two components we have accordingly

Kici
(2.6) By, S, i =1,2,
1+1<1c:1 -9-ch2
or equivalently
™
(2.6a) K.c, = —— , i=1,2;
1 o1-(n,+n,)
12

Each mobile phase concentration is multiplied in (2.6) by a temperature
dependent thermodynamic parameter Ki' which is a measure of adsorption
affinity towards the stationary phase. Since the process is kept isotherm
we may take the parameters as constants, with K, < K,. It appears that only

1 2
the Langmuir form (2.6) allows the construction of a coordinate system as
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described in the following section. In this nice system of coordinates the

variable D, defined in (2.7) plays a central role,

{2.7) Byl + e PREeL

2.3 Constant states, simple waves and shockwaves

In this section we give a short description of the coordinate system

introduced by Rhee, Aris and Amundson4)

. They show that by assuming a Lang-
muir type of adsorption isotherm an alternative coordinate system can be
A o G ¥ : 7 1
derived, similar to the classical ellipsoidal coordinates ,.
We need the following definitionsz):
DEFINITION 1. A constant state is a region in the x,T - plane where the

solution c(x,T) is constant.

DEFINITION 2. A region in the x,T - plane where the solution is in one-

parameter form is called a simple wave, e.g. (Cl(x,T),Cz(Cl(x,T))).

It is well known for continuous solutions that the region adjacent to
a constant state must be a simple wave. Using the dependence of the solu-
tion on a single component in the simple wave regions, it is possible to

rewrite Bfi/BT as

of, 2 3f, odc, 2 3¥f, dec .y dc df.  dc
= § 2= — — S
9T 2, 3¢, 3t ( dc dci) 91T de, a3t

(2.8) g Lo Loy, L 2.

i . . dr : g :
In a characteristic direction p = a;'of this quasi linear hyperbolic system

the total differentials dfi/dci are equal:

af 2 9f, dc, 2 3f, dc,
(2.9) T e } o= ] —=.d dp
E dx dc, L. dc, de L 3c. db Jdc,
i =1 i i j=1 j i

Using matrix F (= Bfi/acj) and assuming that dci/dn # 0 we find
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dc
(2.10) (F=-pI) i Q.

Consequently for non-trivial seolutions p is an eigenvalue and g—; is an
eigenvector of F. The eigenvalues of F are labeled Oyr 0y (01 # oy due to
the hyperbolic character of the system). The two bundles of characteristics
are indicated by Cl, C2. With each ¢, a quantity w_ is associated in the

k k
following way:

(0]

k
(2.11) o, = e+ (=€) =, k=12

The set (ml,mz) forms the alternative coordinate system. Their values are

separated by the thermodynamic constants and can be calculated from these

1)4
constants and concentration values ) ).

(Z2.12) 0 < Wy < K1 < W, < Kz.
Hence the Oy satisfy the inequality

(2.13) € < g€ gL

gSince the o, are reciprocal velocities of waves propagating in the coclumn

k
and € is the reciprocal carrier velocity, both waves are travelling at a
. 1
lower speed than the carrier. g—tz: =u = ue g’—;— & g% = E)'

Since it is not always possible te have diverging bundles of character-
istics, we also have to discuss discontinuous solutions. A necessary condi-

tion for characteristics not to intersect is that

o i T 5
' 3  db  9x .
As duk/dD = A2(1—e)mk/D is negative, this condition is equivalent with the

condition that D increases with x. In case of D decreasing with x the
characteristics will intersect and there can be no continucus solution.
With the mass conservation law (2.3) the well known jump relations can be
found. Furthermore, the discontinuous solutions appear to meet all stabili-

3)

ty requirements for shocks so they will be referred to as shock waves.
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2.4 Computation of w -values

For two components Al" Az with given entry- and initial concentrations
(2.5) the values of n, are calculated according to the isotherm (2.6). The

corresponding w -values satisfy the relation

i o O K300 .
Kl-m Kz-m

(2,15)

Solving this equation for w amounts to solving a polynomial equation in w

of degree two. For the entry state there are two roots mf, wS and in the

; 2
initial state mjl.n' m;". The relation (2.15) implies the following important
identity
K K
(2.16) p=t2,
1“2

, are the two roots of equation (2.15). Considering wy and w, as

variables it appears that in the x,T - plane they can only change one at a
2

where wl, w,

time and only w, changes its value (from w_ on the left to wln on the right)

k k k
on the wave given by % (abbreviated: (k) -wave). It follows from (2.16)
that D varies inversely proportional to w,  on the (k)-wave. In case of a
(k) -simple wave D must increase with x (2.14) w, must decrease with x, so

5 k %
mi > m;n is the condition for existence of a (k)-simple wave. When wz < w}tn
there must be a (k)-shock wave and m: = m]l(n implies there is no (k)-wave in

the solution.

For two components we have the following picture in the x,t - plane (see
also figures in section 4). Going from the initial (1t =0) to the entry
state (x=0):

in in

1. The initial constant state CS(0) with D - value DO = K1K2/u:1 w,

2. The (1) -wave, shock or simple wave, where w, changes to the entry

1
value.

3. The intermediate constant state CS(1) with D -value D
e i - win
3 SR W

e in
1 T KK ey

4. The (2) -wave, shock or simple wave, where w, changes to the entry

2

value.

5. The entry constant state CS(2) with D -value D, = K1K2/m€;m§.
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The lower and upper “k - 1limit of a (k)-simple wave can be calculated with
(2.11)
min _ in
g =e+ (1-e)w /D,
(2.17)

max e
=g + = o
g € (1-g) ‘ﬂk/Dl

The reciprocal velocity of a (k)-shock wave is calculated from the jump

3)4
conditions and the entropy condition ) ).

s in e
(2.18) o, =&+ (I-e)uy /Dk =€ + (l—e)wk/Dk_l

In the following sections we will analyse some possible wave structures and

interactions in the cases of one and two components.

3. One component chromatography

3.1 Shock wave solution

The case of one component adsorbing in a clean column is rather simple,

there is just one shock wave with reciprocal velocity

(3.1 ¢° = e + (1-e)u®,

e " :
where the w -value is calculated from the entry concentration. The depen-

dence on variables is given in table 1.

00® _ _(-e) (1_5)(we)2
ax (1+Kc)2 K2
2
30° 2
- -(l-c)(ﬁ) = ~(1-¢) (%)

TABLE 1. Derivatives of reciprocal velocity with respect

to thermodynamic parameter and entry concentration.

As seen from the formulas of table 1, changes are larger in magnitude for

small ¢ and low concentration c. An increase in parameter K corresponds to
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more adsorption and slowing down of the wave front. An increase in c re-

sults in an acceleration of the wave.

3.2 Simple wave solution

A single simple wave is associated with the removal of one adsorbed
component from a column. It is characterxized by its two bounding character-
istics:

min (mm) 4 max
(3.2) [+] =€ + (1_€>__7€__ ' o =g + (1-g)K,
where the w-value is calculated from the initial concentration. The depen-

dence upon K and c¢ is displayed in table 2:

o 1-€ 0

in;2 . in in 3
min (w )" 20 (w )
o (1..(.;)_..2_._ (._K_ -1) -2(1..5)_‘?..‘

TABLE 2. Derivatives with respect to thermodynamic parameter K
(first column) and concentration ¢ (second column).

max __min

-0

Since the derivatives of the difference ¢ are positive, the simple

wave spreads out for increasing values of K and c.

3.3 Transport of one component

Interaction between a shock and simple wave can also occur. The sim-

plest case is given by the following initial and entry conditions:

(e) = e (WiE) ~U(E-6))
(3.3)

Cx) =0 .

Smit, Smit and de JagerS) describe in detail the interaction between shock

and simple wave for this model.
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4. Two component chromatography

4.1 An initially clean column

Next we consider the adsorption of two components Al, A, flowing into a

2 :
clean column. In the model this results in two shock waves Sl and Sz. In

2
constant state (2) both components enter the column, at S~ component A, is

2,
completely adsorbed so constant state (1) contains only component Al and in

constant state (0) the initial empty state of the column is still preserved.
The values of (n?, “’;
cal shock velocities are

are calculated from entry concentrations. The recipro-

s w‘le e
cr1 =€ + (1—e)6—= € + (1-+:)¢.;1 H
0
(4.1 e e e
s “ i i)

~
il

o, =& + tl-:)—2= € + (1-€)
!

The difference between the two shock waves directions is equal to

e

w
(4.2) 8 =5 s o s Ea R G R
Kl 2

2 1 1

pifferentiating we find the following relations for A

2 e 2.e
n ‘“_E)ml(NZ_Kl)U-nl) + wlmzn1
3K, - 1(2( el
1299 "y
e
an (l-e)wl(l = 0,) (Bowylw, —w,) + K Kow,) = Koo,
®y X, K2 (w0, )
12T
2 2
a a e)mlmz ml(mz—xl) + K.IKZ -,
ac, S
1 2 K1(“2"”1)
2 2 2
an (1-(._)w1m2 wy (mz—Kl) + Kl - W,
acZ Kl K, (0w, -w,)
i R |
TABLE 3. Derivatives of A in section 4.1, w, = m?, w, = mg.
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From calculations in table 3 it can be shown that the derivatives with re-
spect to Kl and c, are negative definite and with respect to K2 positive

definite. The dependence upon c, is very complicated.

1

4.2 Two components initially adsorbed

The case of two simple waves C1 and 02 corresponds with two adsorbed

components Al, A2 going into the mobile phase

cs(2)

cs(1)

cs (0)

X

FIGURE 1. Desorption over two simple waves.

Again there are three constant states. The initial state of the column is

in cs(0). After the first simple wave component A, is completely removed,

2
so in cs(1) its concentration is zero. After the second simple wave Az dis-
appears, consequently in cs(2) all concentrations are zero. The bounding

min
characteristics of constant state (1) are denoted by czl

and aTax. The
difference between these reciprocal characteristic speeds is
in

i Y2 in
(4.3) A =0 -0 = (l=e)—H(w, =K.},
K, 2 1

where w -values are calculated from initial concentrations. The dependence

of A on concentrations and parameters is computed in table 4,



2 in
a _ (1_e)<2m2_K1.f.%.w —Kl(l—n ) ‘wl)
oKy 2 Kf Yy g 2
20, <K, we w, ~K,{1-ni" W, ~K, )
3a %% Yp W TR TR, By~ RgIY
K, (1-g) K e w, —w N 2 /'
2 K2 1 2 K2
2w, -K 2(K -w,)
T e W tu- i W
ac1 X, ](2(m2 —ml)
2w, - K 2(K )
B o mspeeta B, 12 {3
3c2 K2 Kl(m2 —mll
& " 5 v in in
TABLE 4. Derivatives of A in section 4.2, wl = wl i mz = w2 .

The derivative with respect to c, is positive and for c, negative. This

2
make the gap A between the two

1

suggests that relatively low values of €,

simple waves larger.

4.3 One component initially adsorbed, one component in solution

a) The case of permanent separation

Component A_ enters the column, where Al has already been adsorbed. The

2
, ; : 1
adsorbed component dissolves in simple wave C , the new one adsorbs over

shock wave 52. For the two waves we have the following directions
wy™)
a =€+ (l-g)———, [ =& + (1-g)K,,
Kl 1
(4.4)

s _ ey i
g, =¢+ (1 c)mz.

The minimal difference in o between the two waves is equal to

(4.5) b=o5 - o7 = (l-e) ) - K

5 1 b

i

This relation is differentiated with respect to all variables in table 5.
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Bme
e =2
e (1-1:)\8K = 1) = - (1-¢)
1 1
e e 2
o8 o (1—r)3fg-* (l—c)(mz)
BKZ 3K2 K2
2
aw’®
g—i = (1—5)8—22 0
1 1
e
dw
2—’5 (ps)f: -(1~e)(m‘;)2
7€ 2

TABLE 5. Derivatives of A in section 4.3a.

We find that <4 does not influence A, since nTaX is independent of Cy.
The derivatives with respect to Kl and c2 are negative, with respect to K2

positive. Again, low concentration values of the second component (the one

with the largest adsorption affinity) tend to make A larger.

b} The case of a mixed constant state

In the second case we have the same situaticn as in 4.3a, only the

roles of Al and A2 are interchanged. The reciprocal wave velocities are

memi"
o = e+ (1-¢) L2 r
1 K
2
(2.8 e in 2 e
min wl(m2 ) max Y
02 E (I—E)A*E;i;ﬂ" e uz = g + (1_E)ET KZ 2

In contrast to the first case the two components are now mixed in the con-
stant state (l1). The difference in ¢ between the shock wave and the nearest

characteristic of the simple wave is equal to

(4.7) A B )
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Differentiating A we find the following relations

an mlwz((ml—KI)(u}z-Kl) _ 1)

oK, & (I_C)KIKZ\ 2

K K,
LIJZU)

A =

be, ~ll-ed ey Ky
1

3h My 2

= = —(l-g)e——lw, (u, -K,) + w-)

ac, L P 2

TABLE 6. Derivatives of A in section 4.3b, w, = B e

gr g
In the cases 4.1, 4.3a we find what might be expected for the thermo-

dynamic constants, low values of K. and high values of 1(2 make the gap &

between two waves larger. In the oiher cases there is no such simple rela-
tion for K -dependence. With regard to concentrations the situation is com-
pletely different; the dependence on <, is always the same (%(A? < 0), while
% is different in each case. 2

Two simple waves and two shock waves is from a practical point of view
the most interesting case (figure 2). This subject will be treated in the

next section.

4.4 The separation of twc components

Taking piecewise constant boundary conditicns on the T - axis we assume

a fluid containing two components A:l' A, enters a chromotographic column at

x = 0 during the time interval (0,8). Tl21ere will be adsorption over two
shock waves Sl and 52. After time 8 clean fluid, entering the column at
x = 0 removes the adsorbed components in reverse order. This happens in two
simple waves C1 and C2 issuing from the point (0,8). In the physical plane

we have the following interactions



2 . 1
i. Shock § meets simple wave € at xr).

2. 'This interaction ends at Xl,

b ] bt &
3. Simple wave C° is adsorbed by shock S° in X,-

This interaction extends to infinity.

4, The same as (3) for simple wave 01 ans shock 31 in X3.

These are six constant states with D -values

K K. K K
1 1%2 2

42 i L Dz‘weme ' D3‘me ’ Dy = Dy, =B =
1 199 2

where w - values are calculated from entry concentraticng.

The separation is completed after Xl_ Component Al has been concentrated
in the first wave, A2 in the second. A new constant state with zero concen=
trations (= ideal separation) is created between the two waves. For a given
time t = § we investigate the location of B and C in figure 2. The shock 52
is parametrized by o r which runs from mg (at xz) up to Kz (at infinity).

After laborious calculations we find

e e
8K K, (K, - ) (K, - w,) i
Xpluy) = e 2 = 2
(l—e)wlwz (Ky=uw,) (K2—K1) (K, -w,)
(4.9)
2 2 e e

P T S AR e WP Yok b

e e+(1-e)K K, /B e e 2 3

1 2 mlwz (Kz-l(l)

Consequently, the distance between B and C equals

6K, nS K K w, 12 K.y 2
1~2 T2 2 2
(4.10) (X, -X ) (w,) = -( +{ } -(K -K {—} ))
C B 2 e:+(1—c»:)l<1 K2—K1 xz—mz 2 1 w,
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FIGURE 2. The separation of two components with

concentration prefiles at time 1 = t

The value of w, in (4,10) is fixed by choosing a time t. Since the

derivative of this last expression with respect to Wy is positive, it is
clear that the distance between B and C increases in time. The parameter §
is a measure of the total amount of components fed into the column. A change

in this parameter simply amounts to a scaling of all distances in the model.
BAs a result of this we find for increasing § a lower value of zug and con-
sequently a smaller distance.
When Kl is roughly equal to Kz,
hard to obtain, (4.10) indicates that the distance between B and C will be
e
5
esting so it is omitted. The concentration profiles sketched in fiqure 2

a situation where good separation is

large for low values of c The derivation of this result is not very inter-
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for time T = t are vexy simple convex functions of Wy and w,
1 1 e
= — - — < <
cltwl) ”1 A on CD, m1 Sw = Kl
(4.11)
ct)=i--—1- on AB W S w, €K
2% w, ~ K ' 2 %0 % %y

Although the theory is essentially based on an infinite column, it is
interesting that "retention times" can be calculated when the arrival of a
peak at a fixed location X (far away from the origin) is considered as an
exit from the column. Since calculations for the first wave are much more
difficult than for the second, in the following only the second wave is con-
sidered. This difference is a consequence of the fact that the simple wave
C1 emanating from the arc XOXI is not centered. For a given location XB the

arrival time of the second wave is
(4.12) t(Xp) = (e + (1-€)K,)Xy - 2{1-)/C /X + 8 + (1-e)C/X,

with C as in (4.9).
The peak width can also be cbtained for the second wave. The arrival

times of the shock 52 in X, and X, are indicated by Tl respectively T In

1 2
the interval [Tl’TQ] the peak width grows linearly in time

2-

e e
le(Kz—wl)(Kz—KI) (1-¢) (Kz—wz)

(4.13) (xB—xn)tt) = = = + (t-6) =
m](c + (l—t:)mz) (e+(1—s)m2)(€+ (I-E)Kz)

When t 2 T2 the peak width is a nonlinear function
2 2
T ey

(Kze + (1-g)w

w
(4.14) (X, -Xx,){t) = (1-g) (t-4)
B A 2)(5 + (I—S)KZJ

where Wy = w,

the interval [w‘.: &,

(t) has to be replaced by the solution of equation (4.15) in

(4.15) (C(1-g) —Kz(t—ﬁ))mg i 2K2

3
A CE = Kz(t~6) =0

(t—l’i)m2 + K2

5. Concluding remarks

Apart from the restricting assumptions regarding diffusion, mentioned in

section 1, one of the most crucial elements is the adsorption isotherm.



The simple Langmuir isotherm gives even in the case of two compeonents formu-
las which are rather difficult to handle. Other types of nonlinear isotherms
{Freundlich, anti Langmuir) however, cannot be treated with this theory.
Accordingly, the best choice seems to ke the Langmuir form, where the K-
values have to be estimated from numerical data. It is expected that for
large classes of related compounds reliable estimates of K -values can be
obtained, with component interaction taken into account. Using these empiri-
cal values in the Langmuir form the theory yields informaticn regarding the
separation process, such as peak width, retention times and eventually other

moments.
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