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Summary. An isotropic n-dimensional space can
be filled with the (n-1)-dimensional chiral
figure in a chiral way. The whole system formed
requires the presence of a singular achiral
(n-2)-dimensional figure. The elements of chir-
ality which are a centre, an axis, a plane can
be considered as inherent singular achiral parts
of the structures which are chiral in higher
dimensions. Therefore they are the traces of
those chiral structures whose reduction to these
elements is demonstrated.

Introduction

Chirality is one of the fundamentals of a modern stereo-
chemistry along with configuration and conformation1. While two
latter notions are not well-defined and have been re-considered
1=3

recently , the concept of chirality in 3-dimensional space was

defined unambiguously from the very beginning, being based on the

operation of the reflection about a plane mirror4

. Similarly,
chirality in 2-dimensional Bpace5 (i.e. on plane) takes into
account the reflection about a straight line. This concept can
be easgily extended for the n-dimensional space wherein chirality
can be determined using the reflection about (n-1)-dimensional
space. In particular, on the straight line (1-dimensional space)

the reflection should be made about a point (O-dimensional).

Clearly, the introduction of chirality means the introduction of
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an element of metrics, namely, the distinction between equal
distances (that corresponds achirality) and unequal distances
(that corresponds chirality). For 1-dimensional non-linear syst-
ems, curves, one can build "the mirror image" taking into acco-
unt the arc length only.

Now let us go from point to figures, and, first of all,
it is worth to note two different approaches which are used in
chiral stereochemistry. The first one is based on the point
group symmetry, the second one deals with the elements of chir-
ality. Despite the group symmetry approach looks more strict,
it has the important defect in practical use because quite simi-
lar molecules should very often belong to different chiral sub-
classes as shown below. Trans-1,2-dimethylcyclopropane, 02, and
trans-1-methyl-2-ethylcyclopropane, 01, can serve as example.
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On the other hand, the same point group should be assigned to

some isomers which are better to be distinguished like tetra-
hedral and planar~-square CX2Y2 molecules which both belong to
CZV. This had been recognised by Pople who then derived the
more complicated group symmetry notation which is a unique
characteristic of a moleculee.

The important shortage of another approach is the lack of
a clear definition of the elements of chirality, the idea about

which being mainly intuitive. This classification emerged on the

structural grounds, and four types of chirality are to be dis-
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tinguished: central, axial, planar, helical to which the follow-
ing elements of chirality correspond: centre (point), axis
(straight line), plane (plane), helicoide (surface).

In this communication the elements of chirality are treated
as the essential achiral components of more complicated chiral

gtructures in higher dimensions.

Finite and infinite molecules

Stereochemistry deals chiefly with the chirality of finite
molecules, but it also knows large enough macromolecules which
may be coiled into chiral helices and other structures, though.
The conditions for chirality in finite figures, molecular poly-
hedra in 3-dimensional Euclidean space R? are well known, see
for example1. S0 are known the infinite and chiral mathematical
objects such as helical lines and helical surfaces as well as a
limited surface Mobius band. Here the general problem is posed:
how to determine chiral structures in isotropic continua Rn, in
other words, the general ways to chiralize the straight line R1,
plane RZ, space R3, hyperspaces R" are gsought. This pathway is
supposed to permit the better understanding the real sense of

the elements of chirality.

Chiralization of isotropic continua R?

The existence of the chiral helicenes molecules which re-
present the fragments of the helicoide surface in molecular
material suggests the possible way to chiralize R3 space. Para-

netrical equations for helicoide are

X =8cosy, y:as:‘_nLP, z:F(a)+h‘p}_oo<'a<+00
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If a straight line, arbitrarily chosen and perpendicular to a
fixed axis, wilﬂélide along it following the above-mentioned law
with h-—->0 and a-—->coO, so space R3 will turn out to be fill-
ed in with the resulted helicoidal surface in a chiral fashion,
the sense of chirality being determined by the direction of gli-
ding, that is, by sign of E =

Similarly, plane R® is chirally filled in with Archimedean
spiral whose parametrical equations are:

X =aycoslp, y=a ? sin
It is evident that the distance between the neighbour coils of
a spiral will grow infinitely small when a —» O. One should
note the continuity of both helicoide surface and Archimedean
spiral. This is not the case with the filling of an infinite
gtraight line R1 with the chiral point set according to the law:
r=ay sin g

It is interesting that another coordinate which is present in
the equation for Archimedean spiral, r = aL? cos p y» will res-
ult on R1 in the achiral point set* which has a centre of inver-
sion at r = -1/2 (Fig.1). This suggests that it is sinusoidal
coordinate which is respomsible for a chiral filling of R®
spaces with the figures of (n-1)-dimensionality, at least for
n = 1,2,3. It looks possible that similar pattern will be main-
tained for n >3 provided that one sinusoidal coordinate is kept.

Let us emphasize now the important feature of the chiral
filling of isotropic spaces. This is that the n-dimensional iso-
tropic space R™ is filled in with a (n-1)-dimensional chiral fi-
gure, and this process requires the obligatory presence of a

gingular (n-2)-dimensional achiral figure around which the fil-
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ling figure is whirling. So, cylinderic helicoide fills in R3
having a straight line as a base axis, and Archimedean spiral
does R2 with a point as a centre. lMoreover, the filling in R1
with points in the above-mentioned manner requires similarly
the presence of a central, zero point whose singularity is in
its multiplicity. It is likely that the chiral filling of hyper-
gpace R* with a chirsl (helical) 3-dimensional gpace should re-
quire 2-dimensional plane as a peculiar, singular element of the
whole system. Of course, all these singular figures are achiral.

These relationships are summarized in the TABLE,

Real sense of the elements of chirality

This remarkable role played by the achiral singular figures
of lower dimensionality in the chiral systems of higher dimensi-
ons suggests that "the elements of chirality" in stereochemistry
(which are in themselves achiral and therefore look as semantic
nonsense) represent, in reality, the essential part of the chi-
ral systems of higher dimensions in accordance with the TABLE.
In part, the plane of chirality is an achiral element of a chiral
structure in hyperspace R4. According to this concept, the epi-
thet "chiral" as applied to a centre, an axis, a plane is used
as a sign which designates the persistent relationship with the
real chiral structures whose essential parts they are.

Let us now consider the transitions between chiral struct-

ures in spaces of differeni dimensions. If abscisse and ordinate

5 If the multiplicity of zero point may be discarded

**Very recently the concept derived has been applietho the
degign of chiral helicoidal carbon



TABLE
Relationships between the dimensions of the isotropic space, of
the chiral filling figure and of the achiral singular figure

Isotropic space Chiral Achiral
to be filled filling figure gingular figure
(its dim) (its dim) (its ¢im)
straight line ginusoidal miltiple
gucceassgion zero point
*
(1) of points ( 0 ) (less than zero )
plane Archimedean point (centre)
(2) spiral (1) (0)
space Helicoidal straight line (axis)
(3) surface ( 2 ) (1)
hyperspace helicoidal plane (plane)
(4) space (3) (2)
(y) (m-1) (N-2)

% agsigned because of the multiplicity of zero point

of a cylinderic helix is multiplied by factor ? , the applicate
being unchanged, the equations for a conical helix will result
which is going along the surface of the straight cone and there-

fore owns both chiral axis and chiral centre:

x=a@cw$, y:a?sh?, z=h?



The projection of a conical helix on the plane orthogonal
to the axis of the cone affords Archimedean spiral which, in its
turn, being projected on the ordinate axis, results in the stra-
ight line filled in a chiral manner according to the law above
discussed. Since this procedure can be reversed, in principle,
the reconstitution of the n-dimensional picture starting from
the (n-1)-dimensional one can be ulso made. Thus, in order to
move from Archimedean spiral to a conical helix it is necessary
to add the third codrdinate which is linear applicate going
through the centre, and the axis of applicate is now the axis of
gymmetry. One can think that similar operation will permit to go
from a cylinderical helical surface to a helical space in a 4-
-dimensional hyperspace.

Unlike the conical helix, the cylinderical one when project-
ed on the plane orthogonal to the axis of cylinder, gives rise
to an infinitely-fold circle (Fig.2a, h—>0). The similar proce-
dure applied to a helicoidal surface will give the infinitely-
-fold plane 6 . The related but different process, h-soco,
affords the infinite set of planes 6’ which all contain the
axig of cylinder and are orthogonal to plane 6 (Fig.2b).

Simultaneous realization of the operation a —= 0 pulling
on & +to axis will result in a single point. This process can
be regarded as « successive reduction of a chiralized space to
the "plane of chirality", then to the "axis of chirality", and,
finally, to the "centre of chirality". In other words, the ele-
ments of chirality should be considered as the traces of the suc-

cesgive steps in the rolling up of a chiral space.
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FIGURE 1. Chiral (a) and achiral (b) point successions
on a straight line
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FIGURE 2. (a) Reduction of a helical line to an infinitely-fold
circle (h->0) and to a straight line (h—>00¥
(b) The result of the reduction of a helicoidal surface
to an infinitely-fold plane & (h—0) and to a set
of orthogonal planes &’ (h-so00)
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