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Abstract

Spectral moments of factor graphs (Refs. 6-9) of all
benzenoid hydrocarbons containing up to four rings are
computed up to eighth power. Comparability conditions
(of Muirhead ) are applied to the resulting codes. The
resulting hierarchical diagrams successfully predict
actual orders of several graph-theoretical and MO
characters of the factor graphs and their corresponding
Kekulé structures. Several mathematical properties of
the spectral moment codes of the F(k)'s are given. They
are used to construct hierarchical diagrams of the
corresponding benzenoid hydrocarbons which predict the
actual ordering of their heats of atomizations, electron-
affinities , polarographic reduction potentials and
resonance energles.
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The fact that Kekulé structures are permutations of double
bonds has been explicitly stated only recently , It turns
out that such various permutations lead to "conjugation
contents"2 of varying degrees in the individual hypothetical
"localised" mathematical states. This phenomenon was
qualitatively generalised by Frie53 , many years ago , and
was recently computed in terms of a VB-MO index, called
Kekule index” , K(L) , given by egn. 1 for an alternant

system containing 2N pi-electrons :

.
(i, el

Where P, is bond order between atoms i and j and the
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summation is made over all double bonds of the particular
Kekulé structure. When a Kekulé structure is transformed
into the subspace of its double bonds a factor gra hs, F(K),
results. As a result we consider the following Kekulé
structure , kl , and its factor graph , F(kl) :
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Several graph theoretical properties of the F(k)'s have
been studied by one of the authors6'17. Thus connectivity
indicesla of cata-condensed6 i peri-condensed7 and non-
benzenoid hydrocarbonsB of some one hundred F(k)'s were
correlated with the corresponding K(L) values of the VB

structures. Similarly non-adjacent number319 of Hosoya

(i.e. sets of K, subgraphs) were computedgifor F(k) graphs

and again were correlated with the relevant Kekulé indices.
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The mathematical properties of the F(k)'s were recently

investigatedio’lz' An important theoremlB_lE in relation
to sextet polynomial (of Hosoya and Yamaguchizo) was

discovered, Quite recently spectral moments of cyclobuta-

diene derivatives and their factor graphs were computed17

This paper extends our graph-theoretical study to include
computation of spectral moments of factor graphs of benzenoid
hydrocarbons. The details of the graph theoretical method
and comparability criterion may be found in Ref, 17. 1In
addition, an Appendix of definitions is included at the end
of this paper which helps the follow up of this paper.

RESULTS

Table 1 lists spectral moment codes, {sl 5 Sy g eee g sa} "
truncated after eighth power , of all factor graphs studied
in this work. (fig 1). We list the following mathematical
properties of the F(k) moments.

12, Sy (i £ 1) is always an even number.

2°. Let the number of three membered cycles in an F(k) be

nfa , the following relation exists :

s; LFY  =(ng3/m) s, [F(K)]. (1)
where R = total number! of rings in F(k).

Thus , e.qg. SB[I:D’] = (1/2) sz[gj;)o] = & ;

ST = (2) S [DEIT= (209 =2
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Fig. 1

Factor graphs, F(k)'s , studied in this work. They are heavily
outlined into their corresponding polyhex graphs



An interesting corollary is that 53 =5 for F(k)'s which

2
are composed of three-membered cycles only. Since such
cycles are double bond transformates of aromatic sextets,
we have the following topological property of all-benzenoid

hydrocarbonszl; Kekulé structures of benzenoid hydrocarbons

which have full sextets in all of its rings are characterised

by having S, = S3.
The above propety might be understood by realising that :
5,6
s, = E niCi 3 (2)
i=3
s3 = nyCy (3)
where in general njCj is the number of Cj rings in F(k).

The summation in Eqn(2) is over C3, Cq, CS for nonbranched

cata-condensed hydrocarbons and C3, Cq, CS’ € for branched

6
systems (C.F. Ref., 10 for the mathematical properties of the
factor graphs). From Eqns (2), (3) when all cycles are Cy's

S, = 53 We illustrate this property by considering all w5

and w3 ( i.e. self-returning walks of lengths two and three
respectively) in F(kZH) y G Chfs Fig 1) 3

Vg



We have the following walks (self-returning):

vy v, vy vy Vg Ve vy
L 2 2 4 3 3 2 2 Zw2=32:18
w3 2 2 4 2 2 0 V] ,Z’w3:53=12

i ) .
E.g. vy is assiociated with two wo's ¢ (VI’VB'Vl)’

(vl.vz,vl) , and two w3's : (vl,v3, vz,vl) 3

(vl,vz,v3,vl). One observes that both v, and v, are

6
not associated with Was

A natural result of the above property is the following
important topological result : " All-benzenoid hydrocarbons
generate factor graphs for which 52=53“. E.g. chrysene, an-
all-benzenoid hydrocarbon has five non-symmetry equivalent
F{k)'s , (7a - 7e) , Fig 1, of which the one of highest
Kekulé indexq , and highest i'ls (see appendix) is composed
of four C3‘s :

Such a situation does not occur with non-all-benzenoids
such as benz [a ] anthracene. This result might be of
importance in the problem of graph recognitionzz: An F(k)
for which S, = S5 signals an all-benzenoid hydrocarbon

topology.

3%, values of Sg of factor graphs derived from polyhex graphs23
(cata-condensed and peri-condensed) are always integral
multiple of ten.

4%, Let ‘356 be the difference between two S¢ values of two

F(k)'s belonging to a cata-condensed benzenoid hydrocarbon.



The set of F(k)'s group themselves into subsets for each
of which As, is an integral multiple of 12, Some
illustrations serve to understand this property : ( See
Fig 1 and Table 1).
(a) Tetracene

S¢ values increase reqgularly by factors of 24

(=12 x 2 ) , thus

Ass{m » I }

n
1

864 - 840 = 12 x 2

840 - 816 = 12 x 2.

b5 (LI S M}

(b} Phenanthrene

There are two groups , viz., {v%, Dg H ﬁ}
and {%} , we have

a3 {F%p Dg}
ASG{DQ;K:A} = 10 x 12.

12

e

The "single" member , { 1:;:} } , has five conjugated
circuits while all other members contains four such circuits
each. Such "single" graphs have been mentioned in connec-
tion with a recently published suggested definition of

parity of Kekulé structures of benzenoid hydrocarbons.ll'za

{See also relation to Clar's sextet theory25 at the end of
the text).



(c) Benz [a) anthracene

Asg =12 n (n benig an integer) for all pairs of its F(k)'s.
Examples :

Ass{tpvd ; D@?}

11 x 12

12 x 12

]

as, {3®> - 41}7’}

(d) Chrysene

Two groups are distinguished , viz.,

gle{%ibﬁﬁ;%} i
e (TG + Ay}

For each group Asg is an integral multiple of 12.

It is illuminating to note that members of Gl contains &
conjugated circuits each while members of G2 contains 5
such circuits.26

Illustration :

by Lgd
Ass{%; ;%} =12 x 18

However,

12



]

76 # 12 n

ASG{Z)% H @ }
( n is an integer).

5. According to the definitions of strict order and total
strict order given in appendix we state the following
observations

(a) None of the F(k)'s of polyhex graphs23 generate a set
of {si } , i=1,2,3,... values defining a total
strict order. However, a numeration27 might be selected
so as to define a set satisfying the conditions of a
total strict order. Generally the set {53'54""’58}

define such num:brations , for the most important
Kekulé structures (i.e. those structures having highest
Kekulé indices).

(b) In general the F(k)'s corresponding to the least important
Kekulé structures (i.e. those possessing lowest K(L))
have more inflection points28 than their more important
ones. E.g. the F(k) of tetracene corresponding to
Kekulé structure of lowest K(L) , viz.,m has
three inflection points defined by three subsets:

(sz, iz, 54) I ¢ Sy ié: S¢ ) % (36, il' sg ) « En
contrast , the F(k) corresponding to highest K(L), viz.,

>3 , has only one inflection point defined by
(sz, Sy 54).

Ordering and Comparability of the Factor Gr:aphs‘?9

We use criteria of comparability presented in the
Appendix to compare and order the factor graphs. Table 1
lists individual spectral moments up to eighth power, and
their partial sums (generated from left to right).

Hierarchical diagrams of F(k)'s , (Fig. 2)

The function .(vlal vzaz... vkak } defined in Appendix



Fig. 2

Hierarchical diagrams of F(k)'s based on imposing comparabllity
conditions (Eqns A-4, A-5) on their spectral moment codes,
{(truncated after sa). The flgures correspond to the F(k)'s
of the following hydrocarbons :

Fig. 2-a : naphthalene

2-b = nathracene
2-¢ : tetracene
2-d 3 phenanthrene

2-e : benzanthracene

2-f : benzo [c] phenanthrene

2-g9 triphenylene

2h = pyrene
The numbers to the right of the F(k)'s are : conjugated circults,
Kekule index , K(L) , and reclprocal of connectivity 1nﬂex,x'i,
respectively.

g (2R,); 0.917; 0.4142
1 4 . . .
o =13 (2R +R,); 0.912; 0.2912

Fig 2-b
(R,+R,); 0.903; 0.4055
o> 17727 o3> (Ry+R,+R,); 0.900; 0.2885

o> (2R)+2R,); 0.909; 0,2245
T (2Ry+R,+R4); 0.908; 0.2255

Fig 2-c

[]:n, (R +R,+Ry+R,) 5 0.898; 0.229

AA

(3R1) 5 0.913; 0.2966

o

(R1#2R2+R3) 5
0.897; 0.2912

(2R +R,); 0.906; 0.2934

{2R,+R,); 0.900; 0.2899

173

Fig 2d



(3R, +R,); 0.9083; 0.2277

o

(R1+2R2+2R3+R4)
0.8960; 0.2250

(3R1+R2); 0.9112;
0.2285

(3R, +R5)5 0.9071; 0.2264

(2R +2R,); 0.9042; 0.2258

(2R1+R2

0.9028; 0.2269

+R3);

ap

(2R1+R2+R4); 0.8986; 0.2247

Fig 2e
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(3R1+R2);
0.9069; 0.2291

Fig. 2f

(4R1); 0.907; 0.2287

(3R1+R2);
0.904; 0.2277

(3R1+R3) :
0.901; 0.2264

(3R1+R4)
0.898; 0,2247

Fig. 29

O (2R +2R,) 5

%0.9012; 0.2272

- 22 -

(4R;)5 0.9098; 0.2310

g (2R1+2R2+R3);

0.9022; 0.2277

(2R1+R3+R4+R5)
0.8964; 0.2258

(R +3R,+3R 4R, )5 0.895;5 0.2287

0 ;1
(Ry+2R,#R4)3 0.8985 0.2539

(3R1+R3) @
0.905;0.258

(2R1+2R2)
0.905; 0.25806
Fig. 2h



is identified by equating the v's (i.e. the variables) to
spectral moments , while the a's are their populations.
Thus, e.g. for E)(i our function would be expressed as
follows

0 12 12 .52 100 300 700 1892
S) 9% 3 Sy Ss S¢ 57 Sg }

The code , therefore would be

{o, 12, 12, 52, 100 , 300, 700, 1892} .
The first partial sum is

{0, 12, 24, 76, 476, 1176, 3068 } ;

where the first entry is ay the second is (al + az) s

the third is (a1 +oa, + 63) and so on. These partial sums
form the basis of our ordering-comparability scheme as
defined in Appendix. When comparable adjacent points
(representing F(k)'s) are connected a hierarchical diagram
is produced. These diagrams are shown in Figs 2(a-h). Two
graph-theoretical properties, viz. conjugated clrcuits2 and
the reciprocal of connectivity indexls, -1 ; and an MO-VB
character, the Kekulé lndexh , K(L), are correlated with the
order computed from the spectral moments. In most cases an
excellent correspondence occurs ( The levels of the points

of hierarchical diagrams are meant to be roughly proportional

8
to z: sy ). Some observations are worthy of mention:

i=1
1) When two F(k)'s are non-comparable from their spectral
moments, their conjugated circuits also generate codes
whose partial sums are non-comparable also ! Thus , e.g.
phenanthrene (Fig 2d) generates four non-symmetry
equivalent F(k)'s , of which the last one (corresponding
to Kekule structure of lowest K(L))is only comparable

with the most Important F{k). Thus {® ; D@j
. g
and { K:Q:? QP . E are two pairs of non-

comparable graphs from the point of view of their first



eight spectral moments. The first pair generate the
following two conjugated circuits codes30 : (1,2,1);3(2,1,0)
whose partial sums are {1,3,4} ;{2,3,3} for which a]>
a but a; < aj and thus are non-comparable. Another
example that is probably more illuminating is the case of
benz [ a] anthracene , Fig 2-e. A pair of F(k)'s whose

spectral moment codes are not comparable is

(> + XY

The circuit codes of this pair are (3,0,1) and (2,2,0)
respectively ; and their partial sums being {3,3,4} and
{2,4,4} - Agin , they are non-comparable !

2) When two F(k)'s correspond to Kekulée structures possess-
ing identical conjugated circuits , the ordering based on
their K(L) and -l values are opposite to the spectral

moment ordering. As an illustration we consider the
pair
{ w . M% } See Table 1 and Fig. 1
L 4 Ed
sa-l 56.

belonging to benz [a]anthracene.

3) The least important Kekulé structure of triphenylene
(Fig. 2g) generates an F(k) which is non-comparable with

any of the rest of the members. In fact this member

Neg

is anomalous in many respects:

b

a) It is the only member whose Kekulé structure has only one
sextet, and contains eight conjugated circuits.



b) The K(L) index of its Kekulé structure ( = 0.895) predicts

this graph to be the least important while its & is
as high as that of the most important graph , viz.,

¢) ALl non-symmetry equivalent F(k)'s of triphenylene are
related to one another by a degenerate transformation32
but this graph :

— —_—
x_

F(kse) , Fig 1 , is not related to any of the above F(k)'s.

The Ordering of Molecular Properties of the Corresponding

Benzenoid Hydrocarbons:

The spectral moment codes of the factor graphs can be
made to order the molecular properties by the following
procedure33: Let some benzenoid hydrocarbon possessing K
Kekulé structures, and thus K factor graphs , F(kl), F(kz),...,
F(kK) , and let their spectral moments be defined as follows:

Flegh = 85 w dgpr s 9 gy

Flkyd > 351 5 5550 wee 5 Sy

Flke)  — Spp 5 Sgpsees Spg



where the first subscript indicate the particular F(k) and

the second subscript corresponds to the power of the corre-
sponding adjacency matrix ( in our case the highest power is 8).
Thus a code might be associated with the benzenoid hydrocarbon

given by :
K K K
( Zsiy +2 sz »s 255 )
i=1 i=1 c=1

A partial sum might be constructed from the above code. These
codes and their partial sums are listed in Table 2. Figs 3
represent hierarchical diagrams resulting when comparability
conditions explained in Appendix are applied to such partial
sums. It is clear that the linear segments (indicated by
arrows in Figs 3) define orders consistent with orders of
molecular properties including heats of atomizations34 ’
electron affinj.t:.i.es:M , resonance energies, RE's, (of Randid,
of Herndonas, and of Dewar and deLlano)js, and polarographic
half -wave reduction potentials.3“ Excellent agreement of
computed with actual orders are observed in most cases.

Relation to Clar's Sextet Theory23'25

In their graph-theoretical analysis of Clar's aromatic
sextet theory, Hosoya et.al. and Gutman23 defined two types

of sextets, viz., proper and improper as shown below :

R
—0
=

4

HnPFOPEF
Sextet

PI’DPC r

Sextet



Fig. 3

Ordering of molecular properties of benzenoid hydrocarbons
using codes derived by summing the individual moments of all
F(k)'s of the hydrocarbon {(Table 2). The figures correspond
to the following properties

Fig. 3a : Heats of atomization (eV) of the hydrocarbons and
thelr radical anlons (in parentheses).
3b : Electron affinities (eV)
3¢ : Polarographich half-wave reduction potentials (V).
3d : Resonance energles (of Randi¢) , eV.

90.612 (81.025)

123.300 (114.893)

124.222 (114.839) CI? (12;';.};
157.580 (148.560) Y
(129.631)
157.781
(148.505) -~ 157.772
(148.628)
(I% 157.943 (148.535)
Fig 3(a)

0.273

0.664

0.384

Z

0.251
Fig. 3(b)



=-1.%94

-1.61

=1.75

-1.97
Fig. 3(c)

Fig. 3(d)



Furthermore they related the two sextets by a transformation37

R, thus : 1letting ki and kj be two Kekulé structures of a
benzenoid hydrocarbon which differ in only one of their
sextets , then :

R (kl) = kj i R {kj) = ky
Then we might write for the corresponding F(k)'s a similar

transformation , viz.,

T(FCR)) = FCky) 5 T(F(k ) = Flk)

where T (T) is an operator which :

a) transforms F(ki) into ki and then,

b) transforms k1 into kj via R ( R ) transformation
E.g.

. O

R

G

?
k,

Nege

The corresponding F(k)'s are being related as follows :

AV
4] f
A )



We can now state the following conjecture :

" Two F(k)'s which are directly related by a T ( or T )
transformation will have adjacent spectral moment partial
sums" .

Illustrations :

1) Phenanthrene (Fig 2d)
The F(k) possessing least K(L) is adjacent to the one
having highest value of K(L) in the hierarchical diagram
generated from their spectral moment codes. This is not
consistent with overall order of K(L) values or values of
conjugated circuits of the rest of the F(k)'s of this
hydrocarbon. However this "discrepancy" would be expected
if one realises that the most and least important graphs
of phenanthrene are directly connected by a T (7))
transformation thus :

-
—
=

=

e

J

When their corresponding Kekulé structures are superposed

0
-t I

followed by transforming double bonds into single bonds a

Clar's formula , C , results containing one circle :

=
[N



We may generalize :
Kekulé structures whose F(k)'s have adjacent spectral moment

codes yield Clar's structures containing one circle when

suEerEosed 3

Kekulé structures whose F(k)'s have spectral moment codes that

are seperated by one code in the hierarchy generate Clar's

structures containing two circles when superposed. E.g.

%?AV and (Q}: are seperated by I}‘Q

in phenanthrene hierarchy. They correspond to

which when superposed yield :

=0

Therefore the number of circles in the resulting Clar's formula

gives an indication about the relative positions of the corres-

ponding F(k)'s in their spectral moment hierarchy

ii) Triphenylene hierarchy (Fig. 2g)
Again the most and least important Kekulé structures are
related by the transformation :

) ()
R COO OOO

I



We should , therefore , no longer be disappointed to find
their F(k)'s to have adjacent positions in their spectral
moment hierarchy albeit corresponding values based on
conjugated circuits or K(L) values which are not consistent
among overall order of the F(k)'s of triphenylene. Therefore
such sextet rotations might be taken as a tool to forecast
discrepancies in graph-theoretical characters of F(k)'s
(viz., conjugated circuits , and connectivity) as well as
M0-VB character , the Kekulé index when ordered according
to their spectral moments.

APPENDIX OF DEFINITIONS

Kekulé Index“, K(L)

An M0-VB index which relates a given set of molecular
properties to orbitals localised on pairs of adjacent
carbons. It is given by :

kw =L 2 (g + G r2p,)" A
(el
where 2N is number of pi-electrons , while % and # are

charge density and bond orders respectively. For alternant
hydrocarbons Eqn. A-1 reduces to Egqn. 1.

Connectivity Indexla,x

It is defined according to eqn. A-2 :

e = (mim.)-% A-2
E b
i,j

where m, is degree of i th vertex (i.e. number of its
nearest neighbeors). The summation is being taken over all
(i,j)=-edge types. In the present work, the reciprocal of X
is computed for factor graphs i.e.



wf By 4
x = L z (mgm )7 ] f
(i,jYeF(k)

Comparability of Graph529

Comparability conditions of graphs were rigorously
defined by Muirheadz%y attaching a sequence of integers
to each graph and comparing the partial sums of the integers.
Thus, e.g. for two factor graphs one associates two functions,
Fip = Fl(vl,vz,..., vk) and F, = Fz(vl,vz,...,vk) which are
said to be comparable if there is an inequality between them
(either Fl 2 FZ or F1 < Fz) valid for all values of
the variables Vi from a given interval. A special class of
such functions of many variables is :

where ai's are non-negative integers (The a's are viewed as
populations of the variable v's). In our work the v's are
spectral moments derived from topological (adjacency) matrices
of various powers and the a's being their numbers, i.e.
populations. The two structures are said to be comparable if
for every entry in their two partial sums-sequences members

of one structure are larger or equal (but not smaller) than
the corresponding entries in the other sequence. This is

expressed by A-4 and A-5, viz.,

2 T

a
——
+
o
+
-
A\
o

2 i 1+az+...+ai

1 ] L] —
al + a2 +..¢ak =a, + 32 + see 4 A A=5



where k is the number of variables and (< i < k.
eqn. A-5 1is viewed as optional by some authors as it is the
case here.

Spectral moment38 s
These quantities are defined as the trace, tr, of connection

(adjacency) matrices, A, raised to various powers, i.e

Sy = tr ﬁk A-6

A diagonal element ay in ﬁl‘ is self-returning walks from

i
vertex i to itself and whose length is K

In the present work k is varied from 1 to 8. i.e. S1sSpseres
sg are computed.

Strict order27

When one orders spectral moments characterizing a graph
in order of increasing powers of their corresponding A
matrices, one obtains a string BT = {511’512’513"'sim}
where i is a subscript of a particular sequence and the number
next to it is the power to which A of graph is raised (m = 8
in this work). Let the relation < be identified in the set

of S5 values defining BT + A strict order relation in set

BT possesses the following properties :

a) Sir < Sip does not hold for any Sip€ B?
where 1 < r < m.
b) If $5a< Sip and Sip < Sig then
slé(sic H 1 < a,b, ¢ = m.

c) Af Sia € Sip holds, then s, < s;, 1is impossible.
property (c) is a natural result of (a) and (b).



Point of inflection’®

Let {sia » Sips sic} be three successive (i.e.
adjacent ) values of spectral moments belonging to some graph
(i.e. ¢ > b > a).

A point of inflection is identified when

Yia 2 Sfy 8
*ib < Sic
given that a, b and ¢ are adjacent members, sib will be
termed a point of inflection in the code.
Total strict orderz7
A strict order relation, » , is called a total strict

: i m
order if for every pair sia and 5ip of the set Bi s either

< S5y Or S;y < 8 holds. This condition,

s v
ia ia
then, demands no two spectral moments to have identical values

in the same set.,



Table 1:
Spectral moments and their partial sums of factor graphs,
F(k)'s shown in Fig. 1.

F(k) Code (51, Sys ees 3 Sg ) and its partial sum

—

13 0, 12, 12, 52, 100, 300, 700, 1892
0, 12, 24, 76, 176, 476, 1176, 3068

1b 0, 12, 6, 56, 60, 300, 448, 1696
0, 12, 18, 74, 134, 434, 882, 2578

2a 0, 18, 12, 90, 130, 558, 1134, 3874
0, 18, 30, 120, 250, 380, 938, 2072, 5946

2b 0, 18, &, 94, 60, 582, 518, 3814
0, 18, 24, 118, 178, 760, 1278, 5092

3a 0, 24, 12, 128, 160, 816, 1568, 5888
0, 24, 36, 164, 324, 1140, 2708, 8596

3b 0, 24, 12, 128, 130, 840, 1204, 6020
0, 24, 36, 164, 294, 1134, 2338, 8358

3¢ 0, 24, 6, 132, 60, 864, 518, 6028
0, 24, 30, 162, 222, 1086, 1604, 7632

4a 0, 18, 18, 86, 170, 558, 1386, 4102
0, 18, 36, 122, 292, 850, 2236, 6338

&b 0, 18, 12, 20, 110, 546, 896, 3602
0, 18, 30, 120, 230, 776, 1672, 5274

4e 0, 18, 12, 78, 100, 426, 840, 2630
0, 18, 30, 108, 208, 634, 1474, 4104

4d 0, 18, 6, 98, 90, 624, 910, 4282
0, 18, 24, 122, 212, 836, 1746, 6028



Table

F(k)

54

5b

5d

5e

5f

59

6a

6b

6c

6d

[

1 (cont.)

Code (sl,

Syy wes 58) and its partial sum

0,24, 18,
0,24, 42,

0,
0,

24,
24,

24,
24,

24,
24,

2u,
2,

24,
24,

24,
24,

24,
24,

24,
24,

24,
24,

24,
24,

24,
24,

18,
42,

18,
42,

1%
36,

12,
36,

12,
36,

6,
30,

24,
48,

42,

12,
36,

12,
36,

12,
36,

124,
166,

124,
166,

112,
154,

128,
164,

128,
164,

116,
152,

136,

166,

120,
168,

18,
168,

132,
168,

128,
164,

120,
156,

180,
346,

200,
366,

180,
334,

140,
304,

110,
274,

120,
272

%0 ,
256,

240,
408,

124,
346,

140,
308,

120,
284,

140,
296,

804, 1
1150,

816,
1182,

684,
1018,

8o,
1108,

828,
1102,

6814,
956,

912 ,
1168,

816,
1224,

180,
1150,

880,
1188,

816,
1100,

664,
960,

804,

582,
2732,

1820,
3002,

1498,
2516,

1302,
2410,

910,
2012,

5812

8544

6116
2118

4580
7096

5536
7946

5736

7748

994, 4404

1950,

980 ,
2148,

2072,
329,

2704,

1372,
2560,

1008,
2108,

1308,
2268,

6354

6608
8756

6344
2640

1554,5758

8462

6476
9036

5576
7684

5168
7436
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Table (cont.)

F(k) Code (51. Spy ses s 58) and its partial sum
7a 0, 24, 24, 120, 240, 816, 2072, 6344
0, 24, 48, 168, 408, 1224, 3296, 9640
7b 0, 24, 18, 124, 180, 804, 1554, 5764
0, 24, 42, 166, 346, 1150, 2704, 8468
7c 0, 24, 12, 132, 140, 870, 1358, 6258
0, 24, 36, 168, 308, 1178, 2536, 8804
7d 0, 24, 12, 128, 120, 816, 1008, 5576
0, 24, 36, 164, 284, 1100, 2108, 7684
7e 0, 24, 12, 120, 140, 738, 1274, 5064
0, 24, 36, 156, 296, 1036, 2308, 7372
8a 0, 24, 24, 120, 240, 840, 2184, 6888
0, 24, 48, 168, 408, 1248, 3432, 10320
8b 0, 24, 18, 124, 160, 816, 1400, 5988
0, 24, 42, 166, 326, 1142, 2542, 8530
8c 0, 24, 18, 112, 160, 660, 1302, 4456
0, 264, 42, 154, 314, 974, 2276, 6732
8d 0, 24, 18, 108, 150, 594, 1134, 3732
0, 24, 42, 150, 300, 894, 2028, 5760
8e 0, 24, 6, 144, 120, 1038, 1512, 8160
0, 24, 30, 174, 294, 1332, 2844, 11004
9a 0, 22, 18, 110, 200, 754, 1862, 5990
0, 22, 40, 150, 350, 1104, 2966, 8956
9b 0, 22, 12, 126, 140, 892, 1400, 6878
0, 22, 34, 160, 300, 1192, 2592, 9470
9¢ 0, 22, 6, 130, 90, 928, 1036, 7098
0, 22, 28, 158, 248, 1176, 2212, 9310



Table 2 :

Spectral moment codes and their partial sums
derived by summing moments of the individual
F(k)'s of the hydrocarbons.

0, 36, 24, 164, 220, 900, 1596, 5284

Naphthalene
0, 36, 60, 224, 444, 1344, 2940, 8224
N, 0, 72, 36 , 368, 380, 2280, 3304, 15376
0, 72, 108, 476, 856, 3136, 6440, 21816
0, 108, 72, 520, 680, 3127, 5768, 20648
Phenanthrene 0, 108, 180, 700, 1380, 4507, 10275, 31123
Son— 0, 120, 48, 648, 5S40, 4224, 5012, 29984
0, 120, 168, 816, 1356, 5580,10592,40576
—— 0, 168,96, 868,1020,5528,9086,38792
0, 168,264,1132,2152,7680,16766,55558
i 0,192,120,1000,1280,6328,11578,46724
0,192,312,1312,2592,8920,20498,67222
— 0,192,120,1000,1280,6456,11452,46112
phenanthrene 0,192,312,1312,2592,9048,20500, 66612
Triphenylene 0,216,156,1080,1470,6900,12936,50112
0,216,372,1452,2922,9822,22758,72870
0,132,72,732,860,5148,8596,39932
Pyrene

0,132,204,936,1796,6944,15540,55472
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