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Abstract

The concept of the Path Degree Seguence for a graph is important
because of its appliecation in describing atomic environments and in
various classification schemes for molecules. In general it provides a
great deal of information and in partlcular provides more information
than that yielded by the valence class (degree partition class) or even
than that of the "shells of neighbors" system (Distance Degree Sequence)
for a molecule. Thus, it is not surprising that it was hoped that the
Path Degree Sequence would characterize molecules. We show here that,
in general, this is not the case by exhibiting counterexamples to this
conjecture for a variety of classes of graphs. In spite of this we sup-
port the opinion that the concept is still very useful. We close by not-
ing that it is an open problem to find a pair of non-isomorphic regular
graphs having the same Path Degree Sequence.
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1. Introduction

In a recent article M. Randid [1] discussed in some detail the
uses of the enumeration of paths and neighbors in molecular graphs.
Included in this study was an extensive survey of the work done and in
progress by other researchers of this area. Also considered was the open
problem of characterizing molecular graphs through the use of Path Degree
Sequences. With respect to this we will show that a conjecture proposed
in [13 p. 17] is not valid. Nevertheless, the importance of these inva-
riants is not diminished as evidenced by the work cited in [1] as well
as their role in other applications [2], [3], and [4]. In brief, Path
Degree Sequences do not provide a "code" as defined in [4], not even for
trees. However, while they fail in general te uniquely determine a graph
up to isomorphism, they can be extremely useful in demonstrating the non-
isomorphism of graphs. Furthermore, Path Degree Sequences do distinguish
between graphs of certain specified types up to a large enough number of
points so as to be of practical application. See for example our discus-
sion in Section 3.

For our formulation of the problem and commentary we shall use the
following graph theoretic language and notation.

let G denote a finite connected graph with point set {Vl'VZ""'V|G]}
and dij the number of points in G that are at distance j from vy Then,
the sequence (dio.dil,diz,..-.dij,...) is called the distance degree seq-

uence of v, in G. The |G| -tuple of distance degree sequences of the points
of G arranged in lexicographic order is the Distance Degree Sequence of G

and is denoted DDS(G). Similarly, we define the path degree sequence of

4
of paths in G having initial point vy and length j. Here the |G|-tuple

of path degree sequences of points of G arranged lexicographically is

v._in G as the sequence (piO'pil’PiZ""'Pij"") where pij is the number

called the Path Degree Sequence of G and is denoted PDS(G).
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These concepts are illustrated via the graph G shown in FIGURE 1.1,
where we have

DDS(E) = ((1,2,2,1,0,000 )%, (1,2,3,0, 004 3%, (1,3,2,0,- .. )°)

and
2
((1,2,2,4,6,2,0,...),(1,2,3,4,4,3,0,...)%,
2
(1, 2,0, 0,0, 0, 0 e Yo (135853, 302,000 ) )
Note that the exponent notation is used to indicate repetitions of seq-

PDS(G)

uences.

g

G

A considerable amount of information about a graph is contained in
these sequences (see e.g., [1] and [2]). Here we shall only discuss that
which is relevant to the present context. In particular we propose some
problems which are natural to consider. Note that, when G is thought of
as a molecular graph, PDS(G) is precisely the lexicographically ordered
list of atomic codes [l] for the points, i.e., atoms of G.

2. The conjecture

It was noted in [1; p. 13] that "between pairs of atoms in acyclic
structures there is a unique path so that the number of paths of a given
length corresponds to the number of neighbors at a given distance". For

our purposes we formulate this as follows.
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(2.1) For a connected graph G, DDS(G) = PDS(G) if and only if G is a tree.

Proof. If G is a tree, then dij = pij
is exactly one path from vy to each of the dij points which are at distance
i Thus, DDS(G) = PDS(G).

Clearly, for any graph d

for all i and j, because there

j from v
45 < pij for all i and j.

If G is not a tree, then G contains a cycle C of length g. Let v
be any point of G which lies on C and let x be a second point on C such
that x is adjacent to vy Since d(vi,x) =1, x is not among the points at
distance g - 1 from v, . However, there is a path of length g - 1 from vy

+ 1 and DDS(G) # PDS(C). [|

i

to x. Thus, Pig—l > dig—l

In [1; p. 17] the following was conjectured.

(2.2) conjecture (Randié). Two graphs Gy and G, are isomorphic if and
only if Pns(cl) = PDS(G,).

This conjecture is not valid as was shown in [ 5], where there is
exhibited an infinite class of pairs of non-isomorphic trees having the
property that the two members of each pair have the same Path Degree
Sequence. In FIGURE 2.1 we show the smallest order pair of this class.

FIGURE 2.1. A pair of non-isomorphic trees with the same Path Degree
Sequence.
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Using this example it is easy to construct pairs of non-isomorphic
non-tree graphs having a variety of properties and which invalidate the
conjecture. As an illustration, consider the two graphs in FIGURE 2.2.
These are non-isomorphic, each has a cycle of length g, and they have the

same Path Degree Sequence.(The girth of a graph is defined to be the length
of its smallest cycle.)

cycle of \ cycle of

length g length g

FIGURE 2.2. A pair of non-iscomorphic graphs of girth g with the same
Path Degree Sequence.

A second example is that of the two graphs in FIGURE Z.3. These
graphs are non-isomorphic, have the same cycle rank B and the same Path
Degree Sequence, where B equals the number of lines less the number of
points plus the number of components of a graph. Note that § is also inter-
preted as the number of independent cycles of a graph (see [6; pp. 37-39]).

3. Some problems

As noted in Section 2, a tree is not, in general, characterized by
its Path (= Distance) Degree Sequence. The least order for which there
exlsts a pair of non-iscmorphic trees with the same Path Degree Sequence
has been shown to be > 15 for acyclic alkanes, i.e., trees with no point
of degree > 4 (see [1; p. 17]) and < 18 for trees without point degree
restrictions (see FIGURE 2.1).
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.

B independent cycles

FIGURE 2.3. A pair of non-isomorphic graphs with B independent cycles
and the same Path Degree Sequence.

With respect to non-tree graphs, it is asserted in [1; p.17] that
no pair of graphs on < 11 points have the same Path Degree Sequence. The
pair of graphs in FIGURE 2.2 shows that 16 + g is an upper bound for the
least order realizable by a pair of non-isomorphic graphs of girth g with
the same Path Degree Sequence. FIGURE 2.3 shows that 18 + B is an upper

bound for the least order possible for a pair of non-isomorphic graphs
having B independent cycles and the same Fath Degree Sequence. However,
these bounds can be improved. For example, if the B independent cyele
subgraphs of FIGURE 2.3 are replaced by a smaller order and appropri-
ately symmetric graph having g independent cycles, then the bound 18 + B
can be lowered. Specifically, if one uses the complete n-point graph Kn
as shown in FIGURE 3.1 the bound on the number of points is improved to
16 + n for the cases vhere § = (;) -n+1= (n 5 ﬂ . For example, when
B = (g) = 36, the graphs of FIGURE 3.1 have only 26 points and this is
considerably smaller than the corresponding 54 point 36 independent cyles
graphs of FIGURE 2.3.
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complete
n-point

complete
n-point

FIGURE 3.1. 4 pair of non-isomorphic graphs on 16 + n points with (? ; 1)

independent cycles and the same Path Degree Sequence.

The example just cited can be developed to yield the following

result which gives a bound on the order for all values of B.

(3.1) Let p(B) denote the smallest order for which there exists at
least two non-isomorphic connected graphs having B independent

cycles and the same Path Degree Sequence. Then,

p(B) < 16 + (&2@“ for B =0,1,2,...

where [s] denotes the least integer greater than or equal to s.

Proof. The asserted upper bound is obtained by exhibiting graphs
with the specified number of independent cycles and order.

If p = 0, the trees of FIGURE 2.1 yield the upper bound 18; if
B =1, the graphs of FIGURE 2.2 with a cycle of length g = 3, yield the
upper bound 19, Equivalently, these are the graphs of FIGURE 3.1 with

n =2 and n = 3 respectively.
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If B > 2, we note that the graphs of FIGURE 3.1 have order 16 + n
(n=104,5,...) and 8 independent cycles with

fs (g) o (n . ) = 3,6,10,...

For values of B that lie between the values (n 5 2) and (n 5 ]),
i.e., the values that correspond to Kn—l and Kn' we modify the graphs of
FICURE 3.1 by deleting lines from their Kn subgraphs. If this is done as
will be indicated, the Path Degree Sequence will be the same for these
two graphs and the upper bound produced will be 16 + n for the values of
B which are strictly between B = (n 5 2) and B = 1 ; l)- The procedure
for deleting lines from the graphs of FIGURE 3.1 is as follows.

(1) To reduce B by one, delete the line (vl,vz) from the K
subgraphs, and

(2) to reduce B by two, delete any two lines of the l(rl subgraph
which are symmetrically located with respect to the line (Vl'vz)'

In general, to reduce B by an even number, apply (2) the appropri-
ate number of times; to reduce B by an odd number, apply (1) and then
apply (2) the appropriate number of times.

The gap between B = (n 5 2) and B = (n 5 l) is such that there are
always enough lines in the Kn subgraph to lower B to the value
(" 5 2) + 1. Specifically, the maximum number of lines that has to be
dﬁleted from the K subgraph is (n 5 l)n--(: ; %) -1=n-3andK has
(2 2 )
of Kn wh;ch will give us § independent cycles. This equation is equivalent
to 0 = n“ - 3n + (2 - 28) and taking into account that n must be an inte-

lines. Therefore, if we solve B = for n we will have the order

ger greater than or equal to the positive root of this quadratic, we have

o)

2

Finally, note that although this formula is derived with g > 2
in mind it yields the values n = 2 and 3 for B = 0 and 1 respectively.



Thus, it can be used for the two cases considered at the beginning of

the proof, where it can be seen that the graphs are of the same type as
the general case. []

PROBLEM. Prove or disprove the following statements (1) and (2).
The smallest order for which there exists at least two non-isomorphic
connected graphs having the same Path Degree Sequence is

{l) 16 + g, if the two graphs are also required to have girth g, and
(2) 16 + [2—1—%EZE:EE]. if the two graphs are also required to have

B independent cycles.

We ccenclude by turning our attention to r-regular graphs, i.e.,
graphs in which each point has exactly r points adjacent to it. We first
make two observations with respect to Distance Degree Sequences.

First, the smallest order for which there exists a pair of non-
isomorphic graphs having the same Distance Degree Seguence is exemplified
by the pair of five point graphs shown in FIGURE 3.2.

FIGURE 3.2. The smallest order pair of non-isomorphic graphs with the

same Distance Degree Seguence.
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Second, if one asks for the smallest order for which the Distance
Degree Sequence falils to distinguish between r-regular graphs we respond
with the following statement.

(3.2) Let R(r) denote the smallest order for which there exists at least
two non-isomorphic connected r-regular graphs on R(r) points such
that each has the same Distance Degree Sequence. Then,

does not exist if r=0,1, or 2
R(r) =
r+3 I = 3,05,

Proof. If r = 0,1, or 2, the only connected r-regular graphs are
respectively Kl' Kz, and the n-cycles. Thus, for these values of r, there
are no pairs of non-isomorphic r-regular graphs having the same Distance
Degree Sequence.

For r > 3, we note that Kr+1 is the unique smallest order r-regular
graph. Thus, R(r) > r + 2.

If G is an r-regular graph on r + 2 points, then G, the complement
of G, is an (r + 2 - 1 - r)-regular graph, i.e., a l-regular graph, on
r + 2 points. Since the only l-regular graphs are those that are the
union of Kz's. we find that r + 2 must be even and G is unique. The latter
implies R(r) > r + 3.

If G is an r-regular graph on r + 3 points, then G is a 2-regular
graph on r + 3 points. For r + 3 > 6, there are at least two non-isomor-
phic 2-regular graphs on r + 3 points, namely, the (r + 3)-cycle Cr+3
and the graph consisting of the r-cycle Cr and the 3-cycle KB' Since the
diameters of these graphs are [% ; ?] and « respectively, their comple-
ments (the graphs we seek) have diameter 2 and are r-regular graphs on

r + 3 points. Since every point of every such r-regular graph has its
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distance degree sequence equal to (1,r,2,0,...), the complements of Cr+3

and Cr u K3 have the same Distance Degree Sequence. Therefore,
R(r) =r + 3 for r = 3,4,5,... . [

Tt is clear that Path Degree Sequences distinguish among r-regular
graphs to a much greater extent than do Distance Degree Sequences. As we
have noted in the first part of this section, there does not exist a pair
of non-isomorphic graphs with the same Path Degree Sequence on less than
12 points. It also follows frem the proof of (3.2) that the least order
for which such an r-regular pair of graphs can exist is at least r + 3
for r > 3 and that none exist if r = 0,1, or 2. Our investigation has thus
far failed to produce even one pair of non-isomorphic r-regular graphs
having the same Path Degree Sequence.

PROBLEM. For r > 3, does there exist a pair of non-isomorphic
connected r-regular graphs having the same Path Degree Sequence? If
the answer is yes, what is the smallest order p(r) realizable by such

a pair?
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