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Abgtract
The conecept of a degree partition matrix, an element of which is
the number of graph theoretic l4-trees having a specified point degree
partition, is discussed and the availability of data in this format is
announced. Comments are also made about symmetry numbers which are
derived from the automorphism group of a tree and the role these num-

bers play in relating degree partition classes to valence classes of
chemical trees.

1. Introduction

We have recently obtained and displayed in a particularly con-
venient format, the number of 4-irees in a specified degree partition
class [ﬂ This was done for a reasonably extensive set of classes and
for five types of trees: l-irees which are rooted at points of degree
1, 2, 3, or 4, and unrooted {(free) 4-trees.

Chemical interpretations of such trees are well known. For exam-

ple, they can be viewed as the carbon skeletons of monosubstituted
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alkanes and alkanes respectively [2 and references therein]. In other
contexts these L-trees can be viewed as skeletons of more general chem-
ical trees. In particular, this is the case in polymer chemistry where
the detailed structure of a chemical unit can be dispensed with and the
unit depicted simply as a point (see [3] and [4]). (Note that here the
degree of a point need not be bounded by 4.) Furthermore, the degree
partition classes obtained can be interpreted as a refinement of con-
stitutional isomerism classes to constitutional valence isomerism classes,
i.e., in the case of alkanes the skeletons are classified according to
the numbers of primary, secondary, tertiary, and quaternary carbons. Thus,
it seems worthwhile to announce the availability of this data and to give

a brief description of our investigations along these lines.

2. Degree partition matrices

A b-tree is a graph theoretic tree whose every point has degree
no greater than 4, A L-tree having n points, of which p, s, t, and q are
of degree 1, 2, 3, and 4 respectively, is said to be in the degree parti-
tion or valence class (n; p,s,t,q). In view of the relations
ptstt+qg=n

p+2s+ 3t +bg=2(n-1)
any three of the numbers n, p, s, t, and q determine, for a given A4-tree
or class, the remaining two values. We have chosen n, t, and q as our
parameters. Thus, when n, t, and q are specified we have

P=2+t+2q

(2.1)
s=n-2-2t-73q
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For a given value of n, we define the degree partition matrix M{n)

as the (t* + L)x(g* + 1) matrix shown below, where M ., 1S the number of

ta
elements in the valence class (n; p,s,t,q) and t* and q¥* are respective-
1y the largest values of t and q such that the (t + 1) row and (q + 1)

column of M(n) each have a nonzero entry.

M(n) =

w N - o

ntq

t*

The entries in the matrices M(n) are the coefficients of counting
series which were derived using a relatively straightforward application
of the 3-variable form of PSlya‘'s Theorem. The technical problem was that
of obtaining an efficient computer program which would generate the expli-
cit values of these coefficients. We are interested in finding a computer
algorithm, if such exists, which would substantially lower the computa-
tion time used.

The data in [1] consists of the following tables:

Table Rl. Degree partition matrices for rooted 4-trees having

n points and root degree 1 with 2 < n < 27.
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Table Rz. Degree partition matrices for rooted 4-trees having
n points and root degree Z with 3 < n < 27.

Table R3' Degree partition matrices for rooted 4-trees having
n points and root degree 3 with 4 < n < 26.

Table Ru. Degree partition matrices for rooted 4-trees having

n points and root degree 4 with 5< n < 25.
Table F. Degree partition matrices for free L-trees having
n peints with 1 < n < 25.

Table N. Numbers of 4-trees of a specified type.

As an illustration we display here the degree partition matrix
for free 4-trees (alkanes) on 25 points (see Figure 1).

Currently, in work with P. Brown and M. Schiano, we are analyzing
distributions of various types of 4-trees by (i) obtaining descriptive
observations for the explicit numerical data we have generated and (i1)

seeking asymptotic formulas which are valid for large values of n.

3. Discussion

Tt is important to note that degree partition matrices provide
only a first approximation to the distribution of the associated
chemical trees. This approximation assumes that all trees are equally
likely to occur and, in general, this does not adequately describe the
distribution of a specified class of chemical trees. It is postulated
that in a random mixture of isomers, each isomer occurs in inverse

proportion to a symmetry number associated with that isomer ([4] and
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[5]). Examples of symmetry numbers are the orders of various groups
which can be associated with a chemical graph. One such group is G,
the (graph theoretic) automorphism group of the chemical graph being
considered. Although G may be readily determined for an individual
graph, one often is working with a class of graphs for which G is not
the same for each graph in the class. Thus, either one uses an average
value of |G| (the order of G) for the given class or, as was done in
[5], one introduces a symmetry number which is uniquely related to a
specified class of graphs. In particular it was suggested in [ 5] that,
if n, the number of carbons, is large, then the elements of the group
of a tree representing an alkane consist predominantly of peripheral
permutations, i.e., those which permute the hydrogens while leaving the
carbons fixed. This suggests the use of 2%P in place of |G|, where s
and p are as defined in Section 2. As an application, this symmetry
number was used to obtain a good statistical estimate of the radius of
convergence for the alkane isomers counting series. For further dis-
cussion of the uses of G see [ 5 and references therein]. With respect
to large trees of bounded degree > 4, the asymptotic analysis of points
by degree and orbit size developed in [6] is expected to be quite use-
ful in the study of both the distributions of polymer trees and the
automorphism groups of these trees.

In the context of our work we note that the reciprocal of the
symmetry number QSSP can conveniently be used as a statistical weight

for degree partition classes. This is so because each tree in a given
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class has the same symmetry number, i.e., if a #4-tree T is in class
(n; pys,t,q), then by (2.1)
t
2%P = 2"9(3/2)"(9/2)"

Therefore, a weighted degree partition matrix obtained from the matrix
M(n)} with entries Mntq is the matrix W(n) with entries Mntq/s

where 5 = 279(3/2)" (3/2)%.

ntg’

Although sntq was originally intended as a symmetry number for
large values of m, it is nevertheless the order of a subgroup of G and
as such, with possible modifications, it may be of interest to seek
statistical weighting applications of it for chemical 4-trees having
relatively small values of n. Toward this end Sntq need not necessarily
be thought of as an approximation tc |G| but can possibly be thought of
as a weight which takes into account the physical distinction between
the entities represented by the points of the skeleton (e.g., the centres
noted in [4]) and those represented by the terminal points of the chem-
ical tree.

In conclusion we note that symmetry numbers are the source of only
one type of statistical weighting. Clearly, other considerations play a
rele in the probabilistic existence of chemical species. For example,
there are the spacial and energetic requirements discussed in [2] and
[7]. We expect to incorporate these ideas into the theory of molecular

distributions.
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