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A numbering method for finite relational systems is to be de-
scribed. This method assigns a particular numbering class, the
minimum class, to any given relational system. To this end,
ordered numeral systems are defined which themselves can be or-
dered to yield a code for a relational system. In chemistry our
numbering method may be used to number uniquely the atoms of a

molecule and, thus, to generate a systematic name for it.
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1. INTRODUCTION

The work we present in this paper deve]cped]) from the well-known problem

in chemistry of how to number and, ultimately, name a molecule. The impli-
cations of a solution to this problem for a wide variety of computer appli-
cations in chemistry have long been recognized. As early as 1965, the sig-
nificance of numbering and naming became evident when H.L. Morgan published
his famous numbering algorithm for molecular constitutions [1] which still
is the corner-stone of many a computerized documentation system. Since then,
and particularly with the growing acceptance of computers in chemical re-
search, the number of papers concerned with the questions of numbering, nam-
ing, and - closely related - symmetry recognition has grown at an ever in-
creasing pace [2]-[13].

We were interested in a solution to these problems which would allow us to
treat all structural aspects of a molecule, known or yet to be discovered,

in a conceptually uniform, canonical manner. In this context, we wish to
report on a numbering method which presupposes that the structure of a mole-
cule can be represented as a finite relational system. Thus we are con-
cerned with a purely mathematical problem of admittedly elementary character.

The method of describing molecules as relational systems will be dealt
with in the first [14] of a series of three forthcoming papers. An algo-
rithm for the numbering method based on the present work will be given

in the second [15] of these three papers. Once these problems have been
treated, the atoms of a molecule can be numbered and the molecule itself
named; examples will be presented in the last [16] of the above mentioned

papers.

1 The basic ideas were conceived in connection with stereo-chemical in-
vestigations stimulated by A.S. Dreiding. These investigations were
conducted as part of a project under his direction supported by the
'Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen For-
schung'. Portions of this material were presented at the 172nd National
Meeting of the American Chemical Society, San Francisco, Calif., Aug. 29,
1976. We would like to thank A. Hdussler and F. Siegerist for helpful
discussions.



In mathematical literature one encounters numbering methods mainly in con-
nection with procedures for detecting isomorphism between finite graphs.

A comprehensive annotated bibliography relating to the graph isomorphism
problem is given in [17][18] .

2. DEFINITIONS

Definition. Let X be a finite set and R1,R2,...,Rm relations respectively of

Kokprooooky arguments in X,i.e. Ric X1 for 1€ i< m. The ordered (m+1)-tuple

m

S = (Rl sl ooy R

is a finite relational system with the field X. By relational systems, in

this paper, we always mean finite ones.

As an example of a relational system let us consider 0 = (X,R) with
X={a,b,c,d} and the binary relation R = {(a,b),(b,a),(b,c).(c,b),(c,d),
{dsc),(d,a),(a,d)} . The symmetric graph shown in figure 1 visualizes 0.

Figure 1

Definition. Two relational systems S = (X’Rl’RZ""’Rm) and

St = (Y’T1’T2""’Tm') are isomorphic if m = m' and if there is a
one-to-one function  of X onto Y which preserves the relations, i.e.
(Ko XpueesX JE Ry <= H’(x]),f(xz),...,f(xki))eri for 1<igm.

of S to S is an automorphism of S.



It is known that the set aut(S) of all automorphisms of $ together with
the composition of automorphisms forms a permutation group which oper-
ates on X; it is the automorphism group of S. In our example:

aut(q) = abcd} (abcd) abcd) abch abcd abcd) abed (abcd)}
abcd bcda/ * {cdab ’(dabc *\adcb/ \cbad ‘(badc *\dcba .

Definition. Let n be the number of elements of the field X of the rela-
tional system S. A one-to-one function v of X into {1,2,...,n} is a
numbering function, short, a numbering of S.

?ggi) and ¥'= (i?gg) of Q are given.

Apparently ¥ results from v by a "90%-rotation", i.e. by the automorphism

abcd . \ a1
= . =BG
ol (bcda) . More precisely: ¥ =Yool eV 'V

In figure 2 two numberings ¥ = (

v(a)=1 v (b)= Ja =4 ¥ib) =1
vid) =4 v(c)=3 Y =3 Y =2
Fiqure 2

Definition. Two numberings v and »' of the relational systen S are
equivalent if VY s an automorphism of S.

The set of all n! numberings of S, therefore, is partitioned into classes
of eguivalent numberings; this follows from the group structure of aut{S).
The equivalence classes are called numbering classes of S. If v is a num-
bering of S, then [y] = {v«|Leaut(S)} is the class which contains v.
Since v(# v’ for of,Ccaut(S) with £+ o' each numbering class of S
contains exactly g elements where g is the order of aut(S). Hence the



)
number of numbering classes of S equals %;—. In the example of the rela-
tional system Q the automorphism group is of the order 8. 0f the %i = o
numbering classes of Q a representative of each, namely ygfjand W, is

given in figure 3.

ylal=t v(bj=2  y(a)=t um(b)=2  Tl@=1 Tib}=3

Y(d}=4 V(c)=3  u(d)=3 pmicl=4 (d)=4 Tic)=2
Figqure 3

Definition. A numbering method assigns to each relaticnal system S a num-
bering class stand(S)., called standard class of S, where for isomorphic
relational systems S and S', with yestand(S) and v'estand(S'), v"1y

is an isomorphism of S to S'.

Note that the various numbering methods mentioned in literature are re-
stricted to graphs f] 9] [20] [21] [:22] [23] [24] or certain extended structures
[1:] [:2][6_! [7] [B] D 1] [12] [13] : both of these might in fact be regarded as
special relational systems.

3. MINIMUM METHOD

Using lexicographical order we define a total order on the set of the num-
bering classes of a relational system S. The smallest class with reference
to this order is specified as the standard class of S by what we call the
minimum method.

For each numbering ¥ of S there is a relational system ¥(S), isomorphic
to S, which we call a numeral system of S. Let us consider, for example,
the relational system D = ({a,b,c},{(a,b).(b.,c},{c,a)}), which is depicted
by the Digraph in figure 4.



Figure 4

The 3! numeral systems of D are as follows:

?gg) (D). = ({]’2’3}’{(132)=(2s3)=(3,])})
Zgﬁ) (D) = (12,3,1},1(2,3),(3,1),(1,2)})
) (D) = (13,1,2},{(3,1).(1.2).(2,3)})

(11,3,25,0(1,3).,:(3.2)4(2,0)})
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ggg) (D) = (13,2,11,1(3,2),(2,1),(1,3)})

= ({231 :3}a{(211) 9(]a3)s(3§2)})

™
-
w0
—r
—
=]
—
I

The first three numeral systems of D are identical and so are the last three.
For a relational system S it is generally true that: ¥(S) = V'(S) e
V"]\)(S) sV Tyve aut(S). Thus two numeral systems ¥ (S) and v'(S)
are equal if and only if ¥ and v are equivalent numberings of S.

Based on the order of the natural numbers, in each numeral system ¥ (S),
the elements of the field as well as the elements of each individual rela-
tion are now lexicographically ordered to tuples. A uniquely determined

string of symbols ¥(S), which is called an ordered numeral system of S,

is thereby obtained. As above, it is still understood that two ordered
numeral systems v (S) and ¥'(S) are equal if and only if v and v' are
equivalent numberings of S.



A one-to-one function £1 is now defined which assigns the ordered numeral
system v (S) to each numbering class [V] of S. In the example of the
relational system D we can denote {2 as follows:

?gg] ((1,2,3),((1,2),(2,3),(3,1)))
[ ?2’5 e (012,310, 85.02.0).03.25 )

The definition of a total order on the set of the ordered numeral systems
of § is clear now: It may be found through lexicographical ordering. The

smallest element regarding this order is called code of S, written code(S).

With 271 this order can be transferred in a natural way to the set of the
numbering classes of S. The smallest class 11‘1(code(5)) is now the stan-
dard class of S by the minimum method, the so-called minimum class of S,
termed min(S). For our examples D and Q we find:

code(D) = ((1,2,3),((1,2),(2,3),(3,1)))
[[25N] - e (el

COde(Q) = ((]521314}5((])2);(133)5(2s])5(234)a(3’]):(3,4),(4,2)-(473)))

min(D)

and

]

min(Q)

The minimum method is a numbering method in the sense defined above.

For if S and S' are isomorphic relational systems, we first show that
code(S) = code(S'). # being an isomorphism of S to S' and Y'e min(S'),
V7 is a numbering of S. Since code(S') = :FTETS = ;F;;rgs, code(S")

is lexicographically not smaller than code(S). On the other hand, code(S)

is lexicographically not smaller than code(S'), so that code(S) = code(S'}.

It now follows from ¥ (S) = v(S') == Y (S) = Y'(5')«— V' 1y (5) = 5
that, with yemin(S) and vEnﬁn(S'), 9“‘v is an isomorphism of S to S'.

(5 - - o3 )3

)}



To illustrate the minimum method, we give two more examples. First a
relational system with several relations is to be considered, namely W

with the field X = {a,b,c,d,e} and the relations R] = {(b,c),(c.c)}

R2 = {(b,a),(b,d),(b,e)} and R3 = {(a,c,d).(d,c,e),(e,c,a),(b,c,b),(b,b,b)}.
The minimum class of W can be found manually:

e = {3558 (258 5%

The second example is much harder to handle unless one resorts to a computer.
Consider the relational system C with a field of 30 elements and with the
binary, symmetric relation as depicted the cat-like figure 5. The minimum
class of C contains two numberings which differ only in the numbers assigned
to the 'eyes' 22 and 23. As a matter of convenience the points have been
labelled directly with the corresponding numbers.

Figure 5



4, REMARKS

The concept of numbering, which originates in chemistry, could be replaced
by the concept of total order; we chose numberings for simplicity of pre-
sentation.

The terms "numbering of S" and "equivalence of numberings of S" have been
explained only with reference to the field X and to aut(S) respectively.
However, they are definable for any finite set X and, respectively, any per-
mutation group G which operates on X. One may ask whether a total order on
the set of the numbering classes can be defined by using only the structure
of G. This can be proved to be the case if and only if G = NG’ where NG is
the normalizer of G in the symmetric group of X.

The minimum method assigns to each relational system S the standard class
min{S). For certain purposes numbering methods generating different stan-
dard classes might be desirable. These may serve to bring into prominence
certain structural aspects of special relational systems. Thus a particular
numbering method, for instance, leads to remarkable rankings of tournaments
{oriented, complete graphs). Some information on the ranking problem can

be found in [25] [26].

The set of automorphisms can be determined from a numbering class of S, in
particular from min(S). For, if vemin(S), then aut{S)= {Jgjy/ v'emin(S)}
From the two numberings of min(C) (see figure 5), for instance, the iden-
tity and the transposition interchanging the 'eves' are obtained as auto-

morphisms.

Efficient algorithms are needed if a numbering method is to be applied in
practice. The minimum class of C, for instance, is, of course, not obtained
by checking successively all 30! numberings. It is a matter of creating an
algorithm that eliminates a considerable number of candidate numberings
with each step. In cur case the two numberings of min{(C) were found in 0.1
sec on an IBM 370 computer.



The minimum method - or any other numbering method - may be used to detect
isomorphism between two relational systems S and $': One checks whether
code(S) = code(S'). In this context the question of complexity [17]

is of interest: Is there an algorithm capable of detecting isomorphism
between two graphs for which the time required does not depend exponen-
tially but polynominally on the length of the input? The answer to this
still unsolved question has to be positive if there is a polynominal al-
gorithm for the generation of code(S) for relational systems S which de-

scribe a graph.

Code(S) falls within the mathematical concept of coding [17] or canonical
representation [24] of a mathematical structure. If a molecule is described
by S, then code(S) may be considered to be its structural name [14]. Since
this name uniquely represents the structure of the molecule, as far as it
is considered, it may be used for purposes of documentation as well as for
many other applications of computers in chemistry. It is, however, not only
in chemistry but also in other fields that this systematic naming procedure

may be applied.
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