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Abstract. Starting from an idea of Read for coding tree-like
graphs, acyclic isoprenoid structures are coded using a binary
notation system. Context - free grammars are used for generat-
ing either regular (head-to-tail) or standard acyclic poly-
isoprenoid structures (head-to-tail, tail-to-head, tail-to-tail,
head-to-head). It is shown that the characteristics of these
codes are the following : for regular acyclic polyisoprenoid
structures the code detects nine errors and may correct four
errors ; for standard acyclic polyisoprenoid structures the code
detects a single error, By using deterministic pushdown automata,
one May check the presence or absence of errors, and in the

former case one may correct in part the errors.
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1. [ntrocduction

Associated with the generation of isoprenoid structures
using web grammarsl there emerges the problem of generating the
corresponding codes which are necessary for a simpler computer
representation of such graphs. The coding problem for graphs is
that of specifying an algorithm for associating with every graph
a code, that is, a linear string of symbols, in such a way that
two graphs are isomorphic if, and only if, they have the same
code. On the basis of an elaborated coding algorithm we have con-
structed a context-free grammar which associates the correspond-
ing code, if for each production of the web grammar used for ob-
taining a structure of the required type we apply the corres-
ponding production of the context-free grammar, generator of
codes .

It should be mentioned that we are aware of the limi-
tations of the present system which consciously encompasses
only acyclic isoprenoid structures. However, we consider it as
a demonstration of the usefulness of grammars for chemistry.
More general and ambitious coding systems have been developed,
such as the correspondence between chemical names or formulas
and grammars,2 or linear notation systems like the Wiswesser
systems, or topological coding systems like the Morgan algorilhm
used by the Chemical Abstracts Service.4 For a literature re-
view of such general coding systems and for a novel approach im-

proving considerably the Morgan algorithm, cf‘ref.5
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2. Codinc and decedine of acyclic isenrenoid
structures

During the coding algorithm every vertex will have a
tag associated with it, where a tag is a string of symbols from
some 2-symbol set. In the present application we use the set
(0,1} so that every tag is a binary integer.

Let us call the essentfial veailex of an acyclic standard
isoprenoid structure the first vertex with degree 3 met when
going along the given graph (one imagines a traveller following
a path along the graph, starting with one of its endpoints).
This vertex exists in any structure of the required type, be-
ginning with the trivial one (one isopremne unit). The algorithm
intends to label the essential vertex of the structure and then
to take this tag as binary representation of the graph. We take
into account that any structure of the required type has only

vertices whose degrees belong to the set {1,2,3}.

2.1. Coding algorithm

The Coding algorithm is based on an idea of Read.6

Step 1. Choose a crossing sense for the acyclic graph
(t+,+,> ,« ) and take as essential vertex the
first vertex with degree 3 met when going
along the graph in the chosen sense.

Step 2. Note all endpoints (with degree 1) and the
vertices to which they are adjacent. Call
these latter vertices aocis. Label the end-

points with 10.



Step 3.

Step 4.

Step 5.

If the root has degree 2 we obtain its tag
thus : write down the tag of its adjacent end
point and place a '1' before it and a '0*
after it.

Pelete all the present endpoints and their
incident ecdges.

If the root has degree 3 being different from
Lhe essential vertex and having two adjacent
endpoints, we obtain its tag thus : juxtapose
in non-descending order the tags of its ad-
jacent endpoints and place a '1' before this
binary integer and a '0' after it.

Delete all the present endpoints and their
incident edges.

If the root has a single endpoint repeat

step 2 and 3 till obtaining a second endpoint
and apply what was written in the previous
step.

If the root is just the essential vertex and
has three adjacent endpeoints construct its tag
thus : juxtapose in non-descending order the
tags of its adjacent endpoints and place a "1
before this binary integer and a '0' after it.
Delete all the present endpoints and their
incident edges. Otherwise, if the resulting
graph has more then four vertices repeat steps
2, 3 and 4 till obtaining the situation shown

in step 5.



Step 6. The tag of the essential vertex will be the
binary representation of the acyclic graph and
this is determined in a unique way by the es-
sential vertex chosen.

Example

Take the following structure whose binary representa-

tion will be studied depending on the essential vertex chosen.

We will label by N the essential vertex - it is unique with re-
ference to the chosen sense (direction). In turn we consider all
the directions of going along the graph and indicate the vertex
of degree 1 which represents the starting point in going along
the graph. The four directions of going along will be illustrated
in Figures 1,2,3 and 4 in conformity with the starting endpoint.

The given structure

Figure 1

1100 1100

10
1100 1100
N — [— A " N
- N — °
10 ¥ L 10
10

1111010000 111110100000
11101000

1101
10 0100

The code of the structure (1) is : 11011001111101000000



- 30 -
Figure 2
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The code of the structure (2) is : 11011001111101000000
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P
— [ ]
10 10
10 11111011000000
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11011000

Figure 3

The code of the structure (3) is : 11010111110110000000

Figure 4
1
10 0 N
N ——';/Ii;——- °
10
y 10 11111011000000C
111101100000
1110110000
10 107 1100 11011000
10

The code of the structure (4) is : 11010111110110000000

Comments
a) The sense of going along determines in a unique way the es-
sential vertex. However there exist paths which have the same
essential vertex (figures 1 and 2, and respectively, figures

3 and 4).



b) The choice of the essential vertex determines in a unique

way the code of the structure (structures (1) and (2), and res-
pectively, siructures (3) and (4) have the same code).

c) We observe that by means of the algorithm mentioned above

for the chosen graph, we obtained two distincl codes corres-
ponding to two different choices of the essential vertex.

This would mean that the ccding algorithm does not give a unique
binary representation for a given graph since this would depend
by the choice of the essential vertex. Actually, the four graphs
presented in Figures 1-4 are isomorphic, but a chemical dis-
tinction may be made between cases 1 or 2 on one hand, and 3

and 4 on the other hand, namely that we determine the direction
of going along the graph by starting from the endpoint which is
closest Lo a given functional group which may be present in the
compound represented by the given graph (a functional group
contains atoms different from carbon and hydrogen, or multiple

C = C bonds). From a chemical viewpoint, the variants (1) and
(2) of the given graph represent an acyclic isoprencid structure
composed of two isoprene units linked "head-to-tail™ (HT), while
the variants (3) and (4) correspond to an acyclie isoprenoid
structure with "tail-to-head" (TH) linking. Thus, from now on

we will refer to the notion of unicity of a code for a chemical
structure, not for a graph, i.e., the direction of going along
the given graph may be prescribed by the presence and priority

of functional groups.

2.2. Decoding
The above algorithm gives a unique code for any stan-

dard acyclic isoprencid structure, since it prescribes exactly



what must be done at each stage and does nol depend on any
labelling of the vertices. To show that two non-isomorphic struc-—
tures cannot have the same code we now describe a decoding al-
gorithm, whereby the structure can be recovered from the code.

It is easily checked that the two symbols "1" and "0
used above behave exactly like the parentheses "{'and ")" res-
pectively. Any tag is incorporated into parentheses, thus avoid-
ing any dispute as to where one tag ends and another begins. The
decoding procedure is most easily appreciated if we write the
code with parentheses instead of 1's and 0%'s. Thus for the struc-
ture (1) we have

(CHC NEECCHC NN
as the code that is to be decoded. All we do is to see which
left and right parentheses go together, regarding them as being
the extreme left- and right-hand portions of circles or of
other closed curves, and fill in the rest of .this curve. Thus,
the representation with parentheses above becomes the drawing

presented in Fig.5.

Ael ep

Figure 5

Each closed curve corresponds to a vertex of the struc-
ture, and the relation of adjacency is that of immediate in-
clusion of one circle into another.

This method of drawing circles is eguivalent to follow-
ing a more formal algorithm, using the original "0", "1" sym-

bols.



Decoding algorithm

Step 1. Associate a label (a number, letter, or other
symbol) which each "1'" appearing in the code.
(This is purely for reference; each "1" cor-
responds to a vertex of the structure).

Step 2. Scan the code from left to right until a con-
figuration "110" is found. Write down the pair
of labels associated with the two 1's in the
configuration, then delete the second "1" and
the "O".

Step 3. If the resulting string is "10", the vertex as-
sociated with 1 in the configuration represents
the essential vertex; then go to Step 4. Other-
wise, 1f the resulting string has more than
two symbols repeat from Step 2,

Step 4. The pairs of labels which have been written
down in Step 2 will specify the edges of the
structure. From these the structure can be
reconstructed.

Thus the decoding of the structure from Fig.5 gives

the following result
Code : 11011001111101000000
Vertices: 3 é i ﬁ % ﬁ 5 é ; é

Bond '{:.-Stegwise deletion of 10 and vertex
G-J 1109 111, =

JIH_ FED...
110111

JLFED ...,
1111110100 ...
JFEDCA B
111111000 ...
JFEDCE.

T @ (F C«:lﬁ
o

o 1
o0 =



The justification for this is that the sequence "10"
gives the smallest size circle, and therefore represents a ver-
tex of degree 1. It is adjacent only to the vertex represented
by the ecircle, say Z, which contains it. If it is the left-rost
of the circles contained in Z, this will produce the configura-
tion "110", If it is not, then it will eventually become so when
the circles, also in Z, which lie to its left have been deleted.
The sole adjacency of this vertex is recorded before it is de-
leted from the code. We end up with "10'". The label associated
with this "1" represents the essential vertex of the structure.

We will denote "head-to-tail" (regular) and "standard"
linking by HT and S, respectively : S indicates head-to-tail,
head-to-head, tail-to-head, or tail-to-tail linking. 1.7

3. Context-free crammar for codification of stendard

(S) and regular (HT) acyclic isoprenoid structures

The context-free grammars for codification of standard

acyclic isoprenoid structures where obtained by mimicking
- in terms of codes - each production of the constructed wcb
grammars, ignoring the labels of vertices used by them. As any
grammar represents a generative mechanism, the codification of
the structure which appears in each rule of the considered web
grammar could not be done totally in conformity with the coding

algorithm. The modification consists in a criterion for order-
ing the tags of endpoints for constructing the tag of the root.
Since during the algorithm some tags of endpoints are still

unknown (namely, they are not expressed by "0" and "1") they
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could not be arranged in a non-decreasing order. For this rea-
son their incorporation for obtaining the tag of the root will
he e [fected respecting the position : if this is a vertex
of degree threec, different from the essential vertex, one res-—
pects the position left or right relatively to the essential
vertex ; if this is the essential vertex; one respects the
position left, up or right. Thus, after the codification pro-
cess given by the context-free grammars, we shall obtain a
unigue code for each structure of the required type with the
exception of the order of those two and respectively three con-
figurations from the same circle (parentheses). We obtain the
unique code by arranging the configurations which appear in the
same circle in a non-decreasing order. Owing to the generative
character of the grammars, we know the direction of going along
the graph and hence the essential vertex of each obtained
structure.

If we use for each rule of the considered web grammar
its corresponding production of the context - free grammar, we
obtain in parallel with the generation of the structure also

its code.

3.1. The codification o¢f acyclic regular (HT]

{soprenodid structunres using a context - free gramman

Let the context - free grammar be GHT = (VN, VT, P, 8); where
VN = {8, B, D} » Vo= {0, 11

The productions used by GhT are given by Table 1.
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Table 1
No. of Production of Production of The corres—
GHT GHT HT ponding pro-

using "Q"and "1" using eurves duction of

GHT

W

1§ - 1B1100BO g - B @ ™

2 B - 1I0 g - (D m,

3 D - 111BB00OO D - ﬂ3

4 B~ 10 B ~ O m,

Comments
: HT s
The productions Ty and Ta of Gy~ , and respectively 2
and 3 of GHT may be merged into a single rule. Ve did not do
this because we intended to follow more easily the process of
concatenation of isoprene units.
In the productions, the nonterminals B and D represent

labels of the endpoints of the structure which appear in the

corresponding rule of the considered web grammar.

Example
We will generate an acyclic HT isoprencoid structure

and its code.



l 1B1100L0 ﬂ 1101100B0 E 11011001D00O
E 11011001111BBOG0O0O E 110110011111D0B00000O
E 110110011111111BBO000OBO0O0COO é

é 11011001111111110BO0O00OB0O000O i

i 11011001111111110100000B00000 E

é 110110011111111101000001000000

The generation of the code using circles

4 2 ]
et
= - (0(©OB - (o(O -




- 38 -

2
—

The generation of the code using parentheses

1 4 2 3
5 = (B(OHOB) -~ (OC))B) ~ (OO (D)) =~
3 3

2
(OCOIBBYY)Y)) =~ (OCO)(R) BY)Y)Y)) ~

+

IS

(OO (CCCCCCC BB )))) BY)D))

Vo

COCON (CCCCCECCy BY)Y)Y BIID)

LT B A

4
(O CON ey O)NY BI))) ~

bR

(O CONCCCCEECo OMNY ONNI

We obtain the unique code after arranging the configu-
rations which appear in each circle of the code above in non-
descending order. Thus, we have the representation of Figure 6
which gives us the unique code 110110011111011111010000000000
of the above KT acyclic isoprenoid structure with three iso-

prene units.



Figure 6

5.2. The codification of acyclic standard {Acprenoid s Eructunes
using a context-free grammar

S

Let us take the context-free grammar G~ = (VN,VT,P,S),
where
Vy = 18, 4, B, D} » Vo= {0, 1]
The productions usced by GS are given by Table 2
Table 2
No. Production of Gs Production of CS The corres-
using "1" and "O" using curves ponding pro-
ductign of
(e
GW

1 S - 1B1100BO

2 S -~ 1B101A00

O
®

3 A ~ 1D0

4 B - 1D0

w) W =3 w0 w
+

5 D - 111BB000

6 L ~ 11B1A000 - T Ty
7 A= 10 A - O o
O

& B = 10 B =

Comments
In the productions, the nonterminals A, B, D represent
labels of the endpoints of the structure which appears in the

corresponding rule of the considered web grammar.
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Example
We will generate a standard acyclic isoprenoid structure

and its code.

s T 2 m
¢ —o c p 4
B d
A D
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2 4 6 8
S - 1B101A00 - 11D0101A00 - 1111B1A0000101A00 —

8 3 5

- 1111101A0000101A400 -~ 11111011D00000101A00 -

5 8

- 11111011111BB00000000101A00 -

8 8

= 1111101111110B00000000101A00 ~—~

8 3

- 11111011111101000000000101A00 =~

3 6

- 111110111111010000000001011D000 -~

6 8

- 111110111111¢1000000000101111B1A000000 -
8 7
- 11111011111101000000000101111101A000000 -

- 1111101111110100000000010111110110000000

The generation of the code using circles leads to the final

form presented in Fig.7.

& R

The generation of the code using parentheses

Figure 7

2 3 6 8
§ = (BO(A)) = DYOI(AY) ~ ((((BCA)))) () (A)) =~
-8' CCCCOICal)) O (2)) E CCCCOXDdNNNY O (A) -5-
:r)' (CCCOCCCCEB) ) DNIIC H(AY) E((({()(((((()B))))))))()(A))
E CCCCC HCCCCCy € I2333)0))) € H(A)) i
i COCCC ) CCCCee X NN A)EDY)Y) f
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6 8
= CCCCO ECCCCC YCHNMIMIN NCUB (A)))))) -
8 7
= CCCCC YCCCEC XCHMMIMN ) H AN~
7

= CCCCC YCCCCCC) (222 CCecHICC 131N

We obtain the unique code after arranging the configu-
rations which appear in each circle of the code above, in non-

decreasing order. Thus, we have Lhe representation of Figure 8,

which gives us the unique code 1101111101100000011110 -

111111010000000000 of the acyclic standard isoprenoid struc-

ture with four isoprene units (Fig.9)

Figure 9
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3.3. Characteristics, {ennon-detecting and error-cornecting
ability) of the codes

Using the context-free gramnars G“T and GS we generated
the codes (vinary integers) of the IT and respectively £ acyc-
lic isoprenoid structures. Let us call these binary integers
the words of HT and respectively 8§ code.

The Lengith of Lthe word is the number of symbols, "0"
and "1" in our case, which appear in the word.

Because of Lhe type of codification (for cach vertex
of the structure we pul into the word a "1" and a "0") for
any word of the ET or S code, the number of 1 symbols is
equal to the nurber of 0 syrbols. Also, taking into consider-
ation that any studied structure has as its number of vertices
a multiple of 5, we conclude that the length of any word of HT
or S code is a multiple of 10. The words with the samre length
are the binary representations of Lhe structures composed of
the same number of isoprene units.

Ve denote the disfance between ftwo werds x and y of
the same length by d(x,y]; this is the number of the places of
these words where there are different symbols, The name of dis-
tance is justified if we observe thal the properties of the

distance between two points are fulfilled :

It

(i) d(x,y)
(ii) d(x,y)

0 if and only if x coincides with y ;

It

d(y,x),the distance between tLwo words
does not depend on the order in which the words are

considered ;
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(iii) whatever the words x,y,z, we have the following

relation
d(x,y) < d(x,z) + d(z,y)

In fact, d(x,y) is the well-known Ilamcl distance used
in the algebraic theory of binary codes. (See, for instance,
/8/).

Given a binary code with words of the same length, the
problem is to detect the eventual errors and to correctl them.
By an enio4n we mean the wrong receiving of a symbol (for
example, instead of a "0" emitted, one receives "1" and vice-
versa).

A code as considered above defects a sdimple (uniquel
ernon, whatever this unique error is, if its appearance de-
termines the transformation of a word of the code into a word
which does not belong to the code., Using the notion of distance,
the characterization of codes which detect a unique error is
given by

Proposition 1. A code detects a unique error if and
only if there exist two words belonging to it, so that the
distance between ther is greater than 1.

This proposition can be generalized if we introduce
the following definition : A code defects n erkrons if any
chain of at most n errors determines the transformation of the
words of the code into words which do not belong to the code.
Thus, we have the following result

Proposition 2. A code detects n errors if and only if
there are two words belonging to it, so that the distance

between them is greater than n.
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A code cerreets any undique error if such an error de-
termines the transformation of a word belonging to the code into
a word which does not belong to the code, but which is related
to a certain and unique word of the code, much more closely than
to any other word of the code. This uniqwe word will be in fact
the correct word which is to replace the wrong one,

Proposition 3. A code corrects any unique error if and
only if the distance between two arbitrary wordsof the code is
greater than 2,

A code cornects n ehnons if any chain of at most n errors
transforms a word of the code into a word which does not belong
to the code, but which is related to a certain and unique word
of the code more closely than any other word of the code. The
generalization of the above proposition is given by

Propesition 4. A code corrects n errors if and only if
the distance between two arbitrary words of the code is greater
than 2 n,

HT S
We note by cn.lO(Cn‘IO) the set of words which represent
the unique binary representations of the HT (S8) acyclic isoprenoid

HT S

structures with n isoprene units. Let us call Cn IG(Cn lD)

code of HT (S) acyclic {soprencdd stnuctunes with n isoprene

the

units. Taking into account the observations mentioned above, it
ET bS]
results that all the words of cn.10<cn.10
equal with n.10, for any n 2 1, n natural. Let us call the ceode
HT 8
of acyelic HT(S] isoprenoid structunes, denoted by € (C |, the
HT

n.10

) code have the length

set formed by the union of all C (C" 10) sets, where n 2 1,

namely
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HT HT S s
G = Cn.lO ’ € = Cn.lO

n=1 n=1

It is easy to observe that CHT(: CS, because the set of
acyclic HT isoprenoid structures is a subset of the set of
acyclic S isoprenoid structures.

In the following we shall study the properties of de-
tecting and correcting errors of those two codes, CITT and CS.

HT
Let us consider the codes Cn 10’ n 2 3, as the problem raised

CET

2 .10 which contain a single

makes no sense for C??lo and
word.

From the viewpoint of a chemical language,the notion of
Ldentical does not correspond to that ret in drawing. Thus, the

structures of Fig.10 are considered identical and have the same

code.

Essential
I Vertexy

Figure 10




Each of the above structures represents three isoprene
units with HT linking, two units being situated on the same part
of the essential vertex (either on the left or on the right) and
the last of those two units may be situated on the left or on
the right of the vertex of degree 3 from the second isoprene
unit (the isoprene units have been numbered in the sense of ge-
nerating the siructure, namely from top to bottom).

Two structures are Ldentical if they-have the same dis-
tribution ¢f the isoprene units along those two ramifications
which start from the essential vertex of the structure excluding
the positioning of the branch on the left or on the right hand
of the essential vertex. This is also valid for the distribution
of the isoprene units along each branch in comparison with the
preceding vertex of degree 3.

The notion of fevef £ of an acyclic isoprenoid structure

is given by the Figure 11.

_.---Essential Vertex
. bl S Level 1

—————— Level 2 Figure 11

— e 2N — — Level 3
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We observe that the distance between the binary represen-

tation of two I'T acyclic isoprenoid structures with n isoprene
units (n > 3) is minimum when those structures are identical.
An exception is constitued by two structures differing by a
single isoprene unit which is translated above or below with a
single level; this may happen at any level of the same branch
relative to the essential vertex. Let us call such structures,
structunes cof type X.

For simplification, in the examples of Tigure 12, we

will note with xi the coding of the structure labelled with i.

1 2 3 4 5
Figure 12

1101100111110111110111110100000000000000

= 1101100111111111010000011111010000000000
I'T
X1, XZEE C4’10 : d(xl,xz) = 10

b
|



& -

il

Xq 110110011111011311101111101111101000000000000000000

»
[0

4 11011001111101111111110100000111110100000000000000

Xg = 11011001111111110100000111110111110100000000000000

Xy, Xy, XSEE 65_10 i d(xg, x4) = 10

d(x4, %) = 10

The argumentation of this observation consists in the faet that
the difference between the two structures affects only one from
the three tags by means of which we obtain the tag of the es-
senlial vertex. Furthermore, in this tag the modification takes
place on a comrpact zone (area), namely in Lhe first part of Lhe
tag of the first vertex which appears above the level with the
smallest numrber of order relatively to which we can regard the
translation of the isoprene unit. This vertex, denoted by X,
appears on one branch which starts from the essential vertex,
Lel us determine the code of X in two structures, a and b

(Fig.13) in conformity with the coding algorithm.

A,

a),ri\‘
|
! I
X X
ﬁ p\ o
o 9 lS o A
1 1
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Noting with Xa’ Xb the tag of vertex X of the structures
a and respectively b and with o and B the tags of vertices

specified in the figure, we have

el
It

11011111111101000001111af000000000

b
I

1111110100000111110111128000000000

We obtain the distance between the tags

a(x,, X,) = 10

b’
which coincides with the distance between the binary represen-
tations of the structures a and b

Structures of type X appear in any set of acyclic HT

isoprenoid structures with n isoprene units, n = 4. Thus, any
T
n.10 '’

tance is 10.

code C n 2 4 contains at the least two words whose dis-

In the same way we can prove that the distance between
the binary representations of two structures which differ only
by a translation of an isoprene unit upwards or downwards
with two levels, the translation taking place on the same branch
relatively to the essential vertex, is 12, etc. Vhen the tran-
slation of an isoprene unit takes place from a branch to the
other,this affects two from those three tags by means of which
we formed the tap of the essential vertex and therefore the
distance between the binary representations of the structures
will be greater.

In conclusion, the minimum distance between two ar-
bitrary words of a C:?lﬂ code, n > 4 being 10, in conformity
with Propositions 2 and 4 it results that any such code de-

HT
tects nine errors and is able to correct four errors. A C3 10



code contalns two words which constitute the representations of

the two structures of Fig.14.

i 2

Figure 14

X = 110110011111011111010000000000
Xy = 111001111101000001111101000000
d(xl, xz) = 14

Because the distance between those two words of the

code is 14, in conformity with Propositions 2 and 4, it results

I'T
that C3 10 detects 13 errors and is able to correct 6 errors.
e HT BT HT
Thus, if we consider the C = \\// e subset of the C
(3) n.10

nz3
we can say the following

The code of acyclic IT isoprenoid structures with n
isoprene units, n 2 3 is able to detect 9 errors (9 = min {9,13})
and to correct 4 errors (4 = min {4,6)}).

In the case of acyclic S isoprenoid structures it makes
sense to study the problem for codes C , n 2Q2, because

g n.10

[
contains only one word. Let us have the C code whose

%10 2.10

words are the binary representations of the structures presen-

ted in Figure 15.
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TT

Figure 15

Xy = 11011001111101000000
Xy = 11010111110110000000
Xq = 11011001111011000000
Xy = 11010111111010000000
d(xl, x2) =6 d(xz, XB) =6
d(xl, x3) = 2 d(xz, x4) = 2
d(xl, x4) =6 d(XS’ xd) =1

In the case of acyclic £ isoprenoid structures with two
isoprene units the distance between the binary representation
is minimum when a HH linking is replaced by a HT one or vice-
versa and when a TH linking is replaced by a TT one or vice-
versa, The same observation is wvalid also for the distance
between the binary representations of the standard structures
with n isoprene units, n » 2, which differ only by the type of
concatenation of a single isoprene unit situated on the last
level of the same branch relatively to the essential vertex,
namely PH linking instead of ET linking or vice-versa, or TH
linking instead of TT linking or vice-versa. Since each the

S
Cn 10 codes, n 2 3 contains at least two words as binary repre-



sentationg of such structures, it results thal the minimum dis-

2
tance betweon two arbitrary words of any Cn 10 code, n =2 2 is 2.
g .
Therefore, Cn 190 @ z 2 is able to detect a unique error, but

ig nol able to correcl any error (see Propositions 1 and 3).

(=] : ool
fear o S
Thus, if{ we consider the = \yj Cn 1 subsct of the C

8
L3 nz2
we can affirm the following

:

0

The code of acyclic £ isoprenoid structures with n iso-

prene units, n = 2 is able to detect a upigue error.

L, Deterministic nushdown autorata

A pushdown aufematon is a natural model for syntactic
analyzers of contexl-Iree languages, whose infinite storage con-
sists of one pushdown list. ¥e shall represent a pushdewn £45%
as a string of symbols with the topmost symbol written either on
the left or on the right depending on which convention is most
convenient for the situation at hand. From now on, we shall as-
sume that the topmost syrbol on the pushdown list is the right-
most sywbol of the slring representation the pushdown list. A
pushdown aulomaton contains three basic components, illustrated

in I'igure 16.

Input tape
Reading head of _ Reading and writing
the input tape '— . ~" head from {or on) the

FINITE -~ pushdown list
STATE
CONTROL

Fushdown list

Figure 16 .



(i) an input tape divided into cells (squares); one
square can contain a symbol from an {mnput afphabet 1. The number
of the filled squares is finite ;

(ii) a findite state contrct which is able to be in a
certain state belonging Lo a finite set of states S. The finite
state control has a "reading head" for the input tape and
another head for reading and writing the informations from,
respectively on, the pushdown list ;

(iii) a pushdown £ist which contains symbols from a
findte alphabet 7.

The working of such automata in a certain moment depends
on : the symbol situated on the input tape which has been read
in the preceding moment ; the state of the finite state control;
the topmost symbol of the pushdown list.

The input tape can shift in any moment with one square
towards the right passing before the reading head, or can remain
stationary. In the last case we consider that the finite state
control reads the nufl woad, denoted e. When a symbol belonging
to I u{e } is read, the finite state control performs two
actions

1. it passes into another state

2, it writes into the pushdown lisl, replacing the

topmost symbol with a word r & Z* (Lthis word can be
the null one, which actually means the deletion of
the contents of the ftopmost symbol). Of course, the

introduction of a word of length k, k > 0 determines



a shifting downwards of the contents of the pushdown
list with k squares.

The pushdown automaton begins its process from an {mdi-
tial state 4, » having zoez 7 as the topmost symbol of the
pushdown list. This symbol is the staxaf symbol. The recognition
of a word (string) situaled on Lhe input tape takes place after
its last symbol has been read and the pushdown list has become
enmpty.

This notion is formulated more formally as follows

Pedindfion ., A deterministic pushdown automaton (DPDA

for short) is a é-tuple

B = (I, 8; Z; Ty g5 ZO)

where

I is a finite 4nput alphabet ;

m

is a finite set of siale symbols representing the
possible astafes of the finite state contirol ;

% is a finite afphabet of pushdown €ist symbels ;

I is a mapping from =x(I U {c})xZ to S x z" z
SOEZF is the {nitial state of the finite state control ;
zoe;z is the symbol that appears initially on the push-

down list, the start symbel.

* *
A configuration of P is a triple 6 = (s,p,q)e SxI x 2
The configuration 51 = (s,ip,zq), where icl u {c}, z&Z,

precedes dinectly the configuration 62 = (s‘,p,qlq) if and only

if, f(8,1,72) = (s‘,ql). This will be denoted by 51F”_'62
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The configuration & precedes the configuration 8%, if

and only if there exists a finite string of configurations

8 =6, 8
(o]

100

., 8 = 6', so that 5ip__.5

A i=0,...,n—-1. This

L+l ?

*
will be denoted by &F——4"'.

Observations

1

The configuration (s,p,e) cannot precede any other
configuration, because the mapping f is not defined
for such configuration. For this reason, at the
beginning in the pushdown list there exists the
start symbol ZDE Z.

The configuration (s,p,q) indicates that the auto-
maton is in state s and that in the following mo-
ments the word p, situated on the input tape, will
be introduced and that in the pushdown list there
exists the word q written from bottom upwards, the
rightmost symbol appearing in the topmost square.
The relation le—-véz indicates that the automaton
is in state s, that the topmost symbol of the push-
down list is =z, and that the input symbol which
must be introduced is i. We may have i = € when
the single possible evolution leading Lo i is to pass

in state s' and to replace 7z by the word aq-

The fanguage fecognized by a deterministic pushdown

automaton P, denoted L(P), is defined by

L(P)

*

{p/3ses, (s, P, 2y) |—— (5,6,6) }



_57_

4.1, Deterministic pushdoewn automaton for checking the
equality between the numben o4 1's and 0's of the
binary nepresentation of a HT oa S acyclic {soprencid
stnuctune

It was shown in the preceding paper that any binary re-

presentation of a HT or S acyeclic isoprenoid structure has the
number of symbols 1 equal with that of symbols O.

The following deterministic pushdown automaton is able

to check the correctness of any codification from this point of

view.

PP =L, 8, 4, & % Z_)

where I =1{0,1} , S=1{s}, 2={1, z} and the mapping
f is given by Table 3
Table 3
£(s,,1,2) 1 2,
0 (50; €)
1 (s5) 1) (85, 1)
€ (sq, €}

The unfilled places indicate that for those configu-
rations, the mapping f is not defined, namely the i symbol can-
not be applied to the input of the automaton when we have state
s, and z, as the topmost symbol for the pushdown list.

The language recognized by this DPDA is the set of all
words (strings) with "0" and "1" symbols and which fulfills the

following conditions



(i) the leftmost symbol of the stiring is "1"

(ii) the number of 1's is equal with the number of 0's.

These represent a part of those conditions which must
be fulfilled by any correct binary representation of a HT or S
acyclic isoprenoid structure. The rules which determine the
working of the DPDA described above, are

1. Whenever, when going along the input string a "1"
symbol is met, it is introduced in the pushdown
list.

2. Whenever, when going along the input stiring a "0"
symbol is met, the topmost "1" symbol of the push-
down is deleted.

We can obtain the decoding of the input string, thus :

- we associate to the DPDA defined above, an output
vector V, whose dimension (length) is smaller then the input
string with 2

- we associate to each symbol "1" from the input string
a distinct label (number, letter or any other symbol)

- whenever we are in the case i=0 and z=1, before
applying the rule f (SO,O,I) = (so,e) we write down in the out-
put vector V the labels of those two symbols 1 which appear
(if they exist) at the top of the pushdown list. It does not
matter in which order these labels are written down in the V
vector. Each of these two labels will determine an edge of the
given structure. Because of the structure of the isoprene unit
and the admited types of concatenation , any acyclic HT or S

isoprenoid structure with n isoprene units has 5n - 1 edges.
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This explains the length 10n -2 chosen for vector V. If the
analysis of the input string ends successfully, vector V will
contain the edges of the structure, whose coding is the input
string. Oy means of the vector V the structure can be re-
constructed.

To make an easier presentation of the following examples

we number the situations in which the mapping f is defined,

thus
1 f(so, i, zo) = (so, 120)
2 f(so, i, 1) = (SO, 11)
B WEgs 0p 1) = (8, &)
4, f(so, (= ZD) = (so, £)

Examples of Ltesifs by means of the constructed DPDA
1) Let the input string be 11011001111011000000, in
which each 1 symbol will be labelled with a letter from the

alphabet. The length of the output vector V is 18.

(50,11011001111011000000,zo)i..._l__ (50,1011001111011000000,1zo)£_
AB CD EFGH I1J B €D EFGH IJ A

#i(50’011001111011000000’11Z0)FE*{SD:11001111011000000’IZO)F%
CD EFGE IJ BA CD EFGH IJ A

kg-(50,1001111011000000,llzo) Fji (SO,001111011000000,11120) %ji
D EFGH IJ CA EFGE 1J DCA BC

3 3 2
= (54,01111011000000,11z ) |~ (s_,1111011000000, 1z_) -~
DC EFGH 1J cA cA EFGH 1J A

2 2 2
F= (s,,111011000000,112 ) = (s,,11011000000,111z ) p=—

FGH IJ EA GH IJ FEA
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2 2 3
F#«(So,lollODOOOO,1111z0) — (50,011000000,11111z0) F———
H I1J GFEA 1J HGFEA HG

3 2 2
= (s,,11000000,1111z ) }-=- (s ,1000000,11111z )} =
HG i GFEA J IGFEA

% 3 3
F—(s,,000000,111111z ) |-~ (s_,00000,11111z ) p =
JIGFEA JI IGFEA 16

3 3 3
= (5,,0000,11112 ) -2 (s ,000,111z) |-——
16 GFEA  GF FEA  FE

3 3 ) 3 . 4
F““‘(so'oo’llzo) b— (so,O,lzo) —_ (bo,E,ZO)'
FE EA EA A

|J—(so,e,e)

Hence the input string is accepted (recognized) by the
DPDA. When under the sign Fg—— there appear two labels, this
means that before the execution of the rule numbered 3, these
labels will be put in the output vector V from left to right.
Labels do not appear under the sign F_E-— when in the pushdown
list there exists a single 1 symbol (a situation met always
before the last but one stage, if the input string is accepted
by the DPDA) whose label is associated to the essential vertex
of the structure. In our case, the output vector V has the fol-

lowing content

IBFIDIC‘C!A]H'GIJ|I|IlGIGIF|FIElE1A]

and the label of the essential vertex is A.

For reconstructing the structure, we take pairs of ver-
tices from left to right (or vice-versa) of the output vector V.

Each element of a pair will represent an edge of the structure.
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Thus, we have the structure of Fig.17.

B
E¥ANC
D
F
Figure 17
1¢G H
J

formed of two isoprene units with I'H linking, the concalenation
taking place between the vertices I and F (the labels associated
to the vertices are only for reference, they are not specific
for the structure).

2) Let the input siring be 11011001111111000000.

(so,11011001111111000000,zo)}._l_ (so,1011001111111000000,120)}-2_
A3 CD  EFGEIJK B CD EFGHIJK A

2 3 X 2
L2 (s,,011001111111000000,11z ) |*— (s,,11001111111000000 ,17 )}

CD EFGHIJK BA BA CDh  EFGIHIJK A

2 /g

F—(ao 1001111111000000,112 )[-——(S0 001111111000000,111% )F_A
D EFGHIJK CA EFGHIJK DCA

3 4 3 2
F— (s,,,01111111000000,11z ) |2 (s_,1111111000000,12 ) =

DC EFGHIJK CA cA EFGHIJK A
2 2 ) 2
b= (s,,,111111000000,11z ) = (s_,11111000000,111z ) =
FGEIJK EA GHIJK FEA

|_?(so,1111000000,1111z0) = (s,,111000000,11111z_) |2
HIJK GFEA 1JK HGFEA

2 . 2 2
F=(s,,11000000,111111z ) b=— (s_,1000000,1111111z ) |-=_
JK IFGFEA K JINGFEA
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2 3 3
= (s,,000000,11111111z ) |-~ (s_,00000,1111111z ) ~
KJIHGFEA KJ JINGFEA JI

3 3
(5,,0000,111111z )1 °_ (s ,000,11111z )
JI THGFEA ¥ HGFEA HG

A (SD,UO,llllzo)P_E_'(50,0,11120) fEL-(so,s,llzo)
HG GFEA GF FEA PE EA

Hence the input string is not accepted by the DPDA.
Thus, the information recorded in the output veector V would not

be taken into consideration.

Comments

As the CS code of the acyclic standard (&) isoprenoid
structures is a subset of L(P), the language recognized by the
constructed DPDA, there exist string accepted by the automaton
which however are not binary representations of the required
type. Thus, given a string of symbols from the set {0,1}, as
the binary representation of a structure, we check that this
corresponds to an acyclic S isoprenoid structure thus

(i) check if the binary representation is accepted by

the constructed DPDA ;

(ii) reconstruct the structure corresponding to the
given string using the decoding algorithm or the
output vector V ;

(iii) relabel the obtained structure according to the
algorithm of 1abelling1 and start to analyse the
structure using the reduction rules of the web

grammar G§ . If the analysis ends successfully,

W



then the given binary representation belongs

S . ; . 5
to the C° code. Otherwise, the given string is
not a binary representation of a structure of the

required type.
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