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MOLECULAR INTERACTIONS IN BIOLOGICAL SYSTEMS
II. HYDROPHOBIC INTERACTIONS. THE HIBIS ALGORITHM.
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Abstract. The paper presents a new approach of hydrophobic interactions in
biological systems, i.e., the HIBIS algorithm. The aim of HIBIS is to gen-
erate bioactive structures using the computer. The algorithm is based on
the method of least squares with subsidiary conditions. HIBIS is applied
with good results to a series of triazine inhibitors of L. casei dihydro-

pholate reductase.

1. Introduction
The HIBIS (abbreviation for Hydrophobic Interactions in Biological
Systems) approach is based upon the enthropic origin of hydrophobic inter-

actions as shown in Figure 1.
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Figure 1. Schematic representation of hydrophobic interaction: R-receptor,

D-drug, o-water molecules

The fragment N of the drug molecule (D) does not contribute to the
hydrophobic bonding, i.e., this fragment is irrelevant in this context.

HIBIS uses as measure of hydrophobic bonding the log P values, where
P is the octanol-water partition coefficient. Tlog P value is computed
within the f system1 as:

log P = g a; fi + (corrections)
1

where fi is the hydrophobic fragmental constant of the fragment i, and a;
denotes the incidence of this fragment in the considered structure. Tables
1 and 2 collect a few f values useful in applications (for a large collec-
tion of f-constants see ref. 4). Table 3 systematizes the corrections

used within this system.

2. HIBIS algorithm

We proceed by:
i) superimpose all the Si structures, i = 1,2,...,n, of the considered
series of biomolecules according to the point two of the Steric Difference

a]gorithms’T‘

The resulted pattern reflects the topology of the receptor
space investigated by the effectors which are being considered. This

space 1is termed5 Investigated Receptor Space, abbreviated by IRS.
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Table 1. Fragmental f constants (ref. 2)

Eragment aliphatic J aromatic
H 0.167

CH3 0.691

CHy 0.528

CH 0.326

C 0.177

CHy=CH 0.906

COOH -0.943 -0.076
C{O)H -1.217 -0.350
C(0)NH, -1.971 -1.109
C(0)NH -2.427 -1.560
CN -1.052 -0.185
c0 -1.673 -0.806
Br 0255 1.121
cl 0.058 0.925
F -0.485 0.382
I 0.563 1.430

Table 2. f constants for fragments in aromatic rings (ref. 3)

Fragment f Fragment f
CH 0.344 C 0.225
NH -0.60 (fused to aromatic C)

S 0.44 C 0.44
0 0.10 (fused to hetercatom)
N -0.98

ii) IRS constitutes a convenient topological frame, namely: the m ver-
tices of the IRS constitute the topological coordinates for the effector
fragments. Accordingly, the chemical structure S]. is described by the vec-

tor éi,H = [xij]' i =1,2,...,m, where X5 fy if the vertex j of the IRS
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Table 3. Corrections within f-system (ref. 2)

Origin Correction

a) Proximity effect

2C - separation 2 x cy
1C - separation 3 x cy
b) H attached to a negative group 4 x cy
c) Ar-Ar conjugation 1 x ey
d) Cross-conjugation 1 x ¢y
e) Condensed aromtic unit T x cy
f) Aromatic-alifatio differences (3+£1)x Y

(CM = 0.28)

is occupied by the fragment Y of the effector i, and xij = 0 otherwise., f
is ﬁ'ekker.I value associated with the fragment Y. The matrix éﬂ = [xij]’
i=1,2,...,03 J = 1,2,...,m, describes the structure of the effector
series. The corrections, i.e., n x ye are incorporated in the appropri-
ate entry of the X matrix.

{i1) The derived space <IRS>H jsobtained from a given IRS by: one parti-
tions the IRS vertices into receptor (r) and irrelevant (i) ones. <IRS>y,
is specified as:

<IRS>H = [r(mt,...); i(nl,...)]

where Mysenes Nyseens index the r- and i-type vertices of the IRS.  <IRS>
is viewed as a connected graph, i.e., the vertices p and q are connected
if and only if the edge p-q may represent a chemical bond.

The biological response, BRi, elicited by the effector i is computed
accordingly to equation:

BR; = a+ bfi + cff (1)

where fi is given by:
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The HIBIS algorithm consists of the following steps:

1) consider the starting <1RS>|_I denoted by <IRS>H Compute the cor-

o il
responding equation {1) and its correlation coefficient.
2) change the attribute of the vertex j of the IRS (i.e., r = i, or i + r}
if the following two conditions hold:
i)  the resulting equation (1) has a better correlation coefficient;
and
ii) the sugraphs of r- and i-type vertices, respectively, are left
connected.
The changes are performed until further improvements are not possibie.

3) the resulting <IRS>H is considered as <IRS>1 and step 2 is carried

nit
out for all vertices j = 1,2,...,n.
4} continue steps 2 and 3 until no change of the vertex attribute occurs.

The resulted <IRS>H is optimal, denoted by <IRS>O The congruting pro-

pt’
cedure is stopped.

We note that HIBIS and SIBIS algorithm are useful to map both
flexible and rigid biological receptors. Details concerning the HIBIS pro-

gram (FORTRAN) are given in ref. 9.

3. Applications
Itlustratively, we apply HIBIS to study the inhibition of
Lactobacillus casei dihydrofolate reductase by 4,6-diamino-1,2-dihydro-2,2-

di-methyl-1-(3-x-phenyl)-s-triazines (I):
NH,

(D
HN CH),

The inhibition constants collected in Table 4 are taken from ref. 8. The

standard, S, is compound no. 20.
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<IRS> is shown in Figure 1B. Within this <IRS>, the X, .
-l

H, init
matrices are:

L= som, o 0 0 0 0 0 0...0]=

[-1.480 0 0 0 0O 0 0 0...0]

X3 4=[fy 0 0 0 0 0 0 0...0]=
=[0.167 0 0 0 0 0 0 0 0... 0]
Yigm = Uocw, fou fon fon fow fon fow 0-o- 01°

i

[-1.864 0.344 0.344 0.344 0.344 0.344 0.344 0 ... 0]

Table 4. Inhibition constants for triazines (I)

No. X log 1/1¢,
1. SONH, 1.82
2. CONH,, 2.47
3. H 2.64
4. COCH 2.87
5. CHy 3.07
6. OCH, 3.12
% OH 3.19
8. ClCHy)q 3.20
9. C00C ,Hg 3.21

10. S0,F 3.2

1. F 3.29

12 iF, 3.29

13 a 3.45

14 NO, 3.56

15. Br 3.69

16. I 3.73

17 0(CH3)0CqH 3.74

18. 0CH,Chg 4.20

19. 0(CHp ) 3CH5 4,20

20. (CH,) 5CHy 4.96
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Figure 1. (A) <IRS> resulted from atom per atem superposition. (B) <IRS>H
used in the HIBIS computations (-: r-vertex; 4: i-vertex; the vertices 1,2,
13,14 and 15 of <IRS> shown in (A) are contracted into the vertex 1 of
<lRS>H).

The <IRS>H,init = [r(1,2,6,7,11); i(3,4,5,8,9,10,12)] provides
the equation:
Tog 1/1gy = 3.049 (£0.099) + 0.401(x0.077)f + 0.035(:0.036)f2 (2)
(r=0.779, x = 0.421, F = 8.274)

Using the HIBIS algorithm one gets:

log 1/I5O = 3.017(+0.088) + 0.368(+0.060)f + 0.031(:0.023)f2 (3)
(r=0.832, x = 0.373, F = 11.987), with

<IRS> = [r{1:7, 10, 11); i(8, 9, 12)]

H,opt
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