felieh no. 1 pp. 97-125 1981

ON ADDITIVITY OF RESONANCE ENERGIES OF
BENZENOID HYDROCARBONS;

(6
THE CONJUGATED CIRCUITS OF RANDIC( )

Sherif El-Basil

Faculty of Pharmacy KXasr El-Aini Street
Cairo, Egypt

{Received November 1980)

ABSTRACT

Resonance energy of a benzenoid hydrocarbon is computed
to be the sum of rescnance contributed by individusl rings
meking up the molecule. The amount of resonance in a partic-
ular ring is assumed tc be a function of its location in the
molecule but independent of Ehe atructure of which it is part.
Rendid's conjugated circuits 6) of the first five linear ace-
neg are used to assign numerical values to such individual
resonence encrgies of rings using a graph-theoretical sapproach.
The resulting sums, called edditive resonance energies, are
shown to have excellent linear correlations with Dewar resona-
nce energlies,Randid's resonance energies, A-II resonance energ-
ies of Aihara and with Herndon resonance energies. The meihod
represents a novel approach for comparing the stebilities of
a gset of relatively complex benzenoid hydrocarbons simply by
inspection of their topologies.

INTRODUCTICN:
(1)

Since Dewar , more than a decade ago, introduced his
his definition of resonance encrgy, people became sttracted
to the idea of a "reference structure". Essentielly two sch-
ools of thought emerged out of this, viz., (i) Hess and

Schaad(z)

, who showed that HMO theory with enough and proper
parameters lead to results at least as accurate as those of
Dewar, and (ii) the "Zagreb group" (Trinajstid' et. al.(3))

and Aihara(4),whm have, independently, used graph-theoretical
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methods to obtain results in excellent agreement with those

of Dewar.
(&)

{6) who

Two other schools used other appreches: Herndon
using escentially a valence-bond procedure, and kendic
related resonance energy to the conjugation content of a mole-
cule from the number of conjugated circuits in all its Kekulé

valence structures.

In this work Randid®® resonance energies, RRE, of the
first five linear acenes are used to define and compute reso-
nance energies of a wide variety of non-linear acenes uging
an additive scheme. The values obtained will be shown to have
excellent linear correlations with Dewar resonence
energieg, DRE, Resonance energies calculated by Randic, RRE ,
Aihara’® 4-1T resonance energies, AIIRE, and with those of

Herndon, HRE.

POSTULATES AND METHOD OF CALCULATION:

(1) An Additivity Postulate:

A molecule of a benzenoid hydrocarbon is envisaged as a
molecular graph composed of subgraphs connected in a particular
way. Since in this work only benzencid hydrocarbons will be
considered, the smallest subgraph is a six-cycle one, i.e. a
benzene ring. For convenience of illustration each benzene
ring is designated as a vertex, ¢ . Thus napthalene, e.g.,

would be represented as e—e , while phenanthrene as ./.\.,
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and so on, The resulting graphs shall be termed "gen.rating
graphs". The assumption is now made that each vertex donates
an amount of resonance to the molecule that is only a function
of its location in the whole graph (molecule), but indepen-
dent of the structure of which it is part. Resonance en.rgy
of & benzenoid hydrocarbon is then equated to the sum of
individual resonance energies contributed by all vertices
(rings) meking up the total graph. Such sums will be called

"additive resonanc. encrgies", ARE; thus:

where ry is resonance energy of a ring, the locetion of

which is given by 1i.

(2) Assignment of location of a ring:

The linear acenes are taken as models for assigning
locations of rings in molecules of non-linear acenes. At this
point it is significant to distinguish two types of subgraphs
in a benzenoid hydrocarbon, viz., (i) Linear subgraphs: rep-
resenting vertices (benzene rings) attached linearly. The
linear acenes contain only such subgraphs, and ii) Angular
subgraphs: representing angular arrangements of benzene rings.
Phenanthrene, (I), e.g. contains two linear subgraphs:'{a,b}
and {b & c} , &nd one angular graph {a, b, c} . The loca~

tion of a particulaer ring is defined to be the order of the
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linear subgraph it terminates. thus if ring (a) is assigned

1

(//i\\\‘
; 2

a
2 2
2 1

o020

(I)

location 1, then (b) must have a value of i = 2 (this is
because the order of {ab} is 2 ), and so is ring (c).

The ARE of phenanthrene would then be given by (r1 + 2 rz).

Had one assigned a value of i = 1 for ring (b), both
rings (vertices) (a) and (c¢) would have had locations of 2

and thus leading to the same ARE.

Th. same situation obtains if ring (c) is given a
value of 1 = 1. The molecule of benzc [ a ] pentacene
serves to illustrate the method further. The generating

graph of this molecule is shown in (II).

a
£ e d ¢/t
5 4 3 2 2
1 2 3 4 5

(rr)

It is immaterial which end of the graph is given a value of
i1 = 1. Both sequences shown above lead to an ARE = T+ 2r2

+I'3+I‘4+I‘5-
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(3) Resonance energies of individual rings:

RE’s of the linear acenesg are used to assign numerical
values to resonance contribut.d by a particular ring in a
benzenoid hydrocarbon. Empirically Ty the amount of
resonance donated by a benzene ring, the location of which

is i, is given by egn. (2), viz.,

r; = RE(1) - RE (i-1) (2)

where RE(i) is resonance energy of a linear acene conteining
i rings and RE(i-1) is that of & linear acene containing i-1
rings. So, e.g., g would be given by RE(pentacene) -
RE(tetracene). Using Randié'® RE’® eqn. (2) might be writtcn

explicitly in the following form:

r, = —=2 _iT: (1 +1-x)R_-~2 jifl(i—x)R (3)
i i+ 1 ) x i ~nc x

where the first term, it might be shown, is RRE of a linear
acenc containing i rings, while the second term is that for

a linear acene containing i-1 rings. R is an index calcula-
ted by Randié(s) making use of DRE’® of the first five linear
acenes. The value of x indicates thc size of the conjugated
circuit, thus R3’ for instence, is characteristic of a conju-
gated circuit containing 14 pi electrons (such a circuit

might take the shape of a phenanthrene or that of an anthre-

cene. The value of R in Randié's work(e). as well as in this
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work, is assumed to be a function of the size of the circuit,
but independent of its shape). The following values of R

are calculated by Randic’(e): (in ev.)

Rl = 0.869, R, = 0.246 , R.= 0.100, R,=0.041, R.=-0.06 (4)

2 3 4 5

The above values of R lcad to the following r’s (in
ev.), (eqn.3).

r1=0.869, r2=0.454, r3=0.276, r,=0.183, r.=0.101 (5)

4 5

Subgtituting eqn. (3) into (1), one obtains an expression

for ARE in closed form:

1 i 1 i-1
ARE=2):i_{i—+—lrx(i+l-x)Rx—I:):

X

(i-x) R 6)

Eqns. (6) and (1) are completely equivalent.

THREE EMPIRICAL RULES:

It sometimes happens in pericondensed systems that
a particular ring might assume more than one location, e.g.
in the triphenylene derivative, (III), one might assign a
value of 1 = 3 for ring (a), as being at the terminus of

the anthracene subgraph {c,b,a} or a value of i = 2, as

(e)
0000

(m)
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being part of the phenanthrene subgraph {e, B, d} . To
avoid ambiguities in assigning locations of rings in pericon-

densed systems certain empirical rules will be used:

i) If e ring (vertex) is simultaneously a part of a phenanth-
rene subgraph, and a linear subgraph, it is given a value

of i = 2 (as being part of the phenanthrene subgresph).

ii) If, in & pericondensed system, a ring is located such that
it shares a number of its adjacent bonds with those of a
subgraph in the total graph, its resonance contribution
is reduced by a factor of (1/n), n being the number of
bonds in common. Such rings will be called "common rings".
The molecule must be viiwed as having the minimum number
of common rings. Perylene, (IV), serves to illustrate

this rule:

00
000

(@)

One might visuelize this molecule as being part of a
phenanthrene subgraph, {a,b,cs s plus two common rings,
(e) and (d). Alternatively, it might be viewed as two
naphthalenes, {a,e} and {c,d} plus a common ring,(b).
It is this latter choice that keeps the number of common
rings minimum. One assigns the following locations as

shown below:
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o0
55

Rings (c¢) and (d¢), it is to be observed, have been considered
as parts of the phenanthrene subgraphs {a,b,c} and {e,b,d }
(c.f. rule i).

Because ring (b), the common ring, shares two of its
adjacent bonds with each naphthalene subgraph, its resonance
contribution is given by (r2/4).

Pyrene, (V), illustrates the rule still further:

()
(S
(&)
W)
Resonance contributions are shown inside rings. If there is
& choice of which ring to be considered "common", the one
of higher location is selected. Zethrene, (VI), is an exa-

mple:

o %af2
GOCCIES 20C0

D

iii) The Triphenylene subgreph:

The particular gstructure of triphenylene leads to an
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induced sextet in its central ring which imparts an extrasta-

bility that amounts to 0.4 rings(gg guggested by magnetic
(7

measurements Th: refore whenever a triphenylene subgraph
could be factored out of the total graph an additional factor
of 0.4 r, is (empirically) added to its ARs. For triphenylene

itself its ARE is, therefore, (r1 + 3r, + 0.4 rE).

If, furthermore, two triphenylene subgraphs share toge-

ther their central ring a faector of 0.4 r2 is added to each

gystem. Coronene, {VII), is such an example:

Bl
Oy

(VIN)
The undott.d rings share the central ring of th. dotted tri-
phenylene system making another triphenylene. Thus ARE
P
2

(coronene) = (rl + 3r2 + 0.4 rz) + {3 x 3 + 0.4 r2). The

game applies for the triphenylene derivative (VIII).

(i)

Thus ARE (VIII) = (r1 + 3r2 + O.4r2) + (I‘3 + 2r, & 0.4r2}.
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RESULTS:

Table 1 shows the hydrocarbons studied in this work ,
their circuit decomposition(s)divided by the number of their
Kekulé valence structures, their additive resonance energies,
ARE’S, and the corresponding values of Kandié’® resonance
energies(e), KRE’S, The table also lists available values of
Dewar resonance energies(l), DRE, Aihara’® A-IT resonance

(4),

energies AITRE, and Herndon’s resonance energies(5),HRE.

Least-squares analysis of the data leads to the follow-

ing linear egns. ; correlation coefficients being shown in

parentheses:
KRE = 1.2766 ARE - 0.2911 ; (0.9930) (7)
DRE = 1.2722 ARE - 0.3448 ; (0.9921) (8)
AITRE = 0.3100 ARE + 0.0I78 ; (0.9823) (9)
HRE = 1.2459 ARE - 0.2648 ; (0.9906) (10)

Figs. 1-4 are plots of eqns. T7-10.

DISCUSSION OF RwSULTS

The method represents a novel topological method of
computing resonance energies of benzenoid hydrocarbons using
only a pencil and a paper approach. The method might be
viewed as an extension of Clar's belief that the indivdual
rings in a benzenoid hydrocarbon have different aromaticiiggs-

This very concept is embodied in eqn. (6), where ARE’®  are
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Correlation of Randic’s rescnance energies
RRE, with ARE’s, equ. (7)

(6)
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Correlation of Dewar’s resonance energies
DRE, with ARE’'s, equ. (8)

(1

25 27 29 3+ 3. 3-5
DRE, ev. 3
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Correlation of Aihara’s resonance enerqiesM)

AITRE, with ARE's, equ. (9)

Fig. 3:
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Correlation of Herndon's resonance enerqies
HRE, with ARE’s, equ. (10)
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identified as sums of individual Rb’® of the rings compesing
a molecule, In our treastment the "value" of aromaticity of
a particular ring has been related to its location relative
to othur rings in the mol-cule but independent of th. struc-
ture of which it is part.

(9)

Graph-Theoretical analysis of data

Invegstigation of table 1 reveals two main points rega-
rding equalities and non-equelities of two (or more) ARE? S

(and the corresponding other RE'S):

(a) If the ARB’® of two (or more) iscmeric non-lin_ar acenes

happen to be identical, their other estimates of RE’® ( by

(6)’ (1) (4)
3

Randic Dewar Aihara or Herndon(S)) are also
identical or nearly so. Lxamples asre systems (3,4); (8,9) ,
(10,11), (12, 13, 14), (17,18), and (19,2(,21. Randic calls
such peirs of igomers "isoconjugate syztems" , as being having
the samc "conjugation content™ from a consideration of their
number of conjugated circuits and Kekulé valence bond struc-
tures.

The generating graphs of some isoconjugate systems

Talal {_;I‘__}}
4 9

"Generating graphs of some isoconjugate systems".



In the langueg. of graph theory one states the following

lemma for such isoconjuget. systems:

Lemma 1

Let Gl(n,m) = (V,E) and Gz(n,m) = (V,E) be two generating
graphs of order m end size m.

Let Gl (n,m) be factored out into a set of linear subgraphs:
G) (m),my) = (V), E})5 6" (aym) = (V} , B ),...., and
similarly for Ge(n,m); being factored into a set of lincar
subgraphs Gé(né, mé) = ( Vé " Eé) ; GB ( ng , m"E) =

(V“g, E"a), sssey Where

(v Ei) [ i Gl(n,m), and

~
13
~

(Vv;, ) C Gy(n,m),

and similarly for other subgraphs.

If the two sets have identical numbers of subgraphs, then:

ARE(GI) = ARE (GE) iff
ni = né ; ny=ngy , ....and
mi = m; 3oom"=mt, ..

Clearly in a set of generating graphs belonging to an iso-
conjugate system there is & correspondance between their
vertex sets that preserves adjacency. i.e. such graphs are

isomorphic.

If, furthermore, Kl = K2 ; K being the number of Kekulé

valence-structures; then
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HE(Gl) = RE (GB)

From table 1, it is seen that hydrocarbons 8,9,10,11 have
gll identical ARE's yet HRE(8) = RRE(9) # RRE(10) = RRE(10).
This is to be expected since the conjugation contents of

{8) and (9) are different from those of (10) and (11). Thus
K8 = K9 = 11 while KlO = Kll = 12. A better index for
comparing stabilities of a set of benzenoid hydrocarbons,
would, therefore be AREx K rather than ARE. For the above

set one has: (in ev.),

KBARE8 = KQARE = 11 x 2.507 = 27.577 ; RRE

9 = = RRE9 = 2.830

8
KloARElO = KlOARE10= 12 x 2.507 = 30.084; RRE10=RRE11= 24991

One, therefore, might state the following simple rule :

A set of isomeric benzenoid hydrocarbons having identical
values of (K.ARE) will have identical RE’s. Throughout the
get of 45 hydrocarbons studied in this work no violations

to this rule hav. been observed.

(b) This part of the discussion is concerned with inequali-
ties of ARE's of a pair of isomeric benzenoid hydrocar-
bons. The amount of resonancc contained in two or more
graphs of the same order and size might be compared by
simply inspection of the order of the linear subgraphs
contained in each one; the one with higher order contains

the lower amount of resonance;given identical K’S. fThis
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is a natural result of th. fact that r, > r  for all m {n.
(c.f. eqn. (3); in Tact ry, —> o as 1 —o0, a result
consistent with the well known fact that as the number of
rings in a linear acene increases, its stability goes
down(lo)).

Examples are:

i) ARE(T) <& ARE(B)
ii) ARE(17) < ARE(19)
iii) ARE(32) < ARE(34)
iv) ARE(36) ( ARE(38).

The corresponding RE's follow the same pattern,

provided identical K’® in each set. If the K’® are
different then to compare the stabilities of two or more
isomeric benzenoid hydrocarbons one uses K.ARE'S, For
exampl. compounds 15 and 17 are isomeric yet the former,
cne might factor out two linear subgraph each of order 3,
while the latter contains a linear subgraph the order of
which is 4. One, therefore, concludes that ARE(17) <
ARE(15), which is indeed true, yet RBE(17) > RRE(15). This

latter order is reproduced when K.ARE is used, thus:

16 x 2.690

K17ARE17 = 43.04 ev. ,

ARE 15 x 2.783 41.745 ev. ,

[
]

5808y

i.e. KARE(17) > KARE(15) , which is identical to

their order of stabilities.
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In this context one states the fellowing lemma:
Lemma 2
Let Gl(n,m) and Ge(n,m) be two generating graphs, such that
there exists two subgraphs so that:
Gi(ﬁ}ml) (- Gl(n,m) .

Gé(nz,mg) EE Gz(n,m)

Then ARE(Gl) < ARE(GE) iff

ny > n,

If, furthermore,
K, ARE(G, ) < K ARE(G,) , then

RE (G;) < RB (G,).

Lemmas 1 and 2 make it possibl. telling relative stabilities
in a set of isomeric benzenoid hydrocerBons simply by insp-
ection of: a) their topologies, as manifested in the quan-
tity ARE, and b) their conjugation content, as reflected

in the value of K.

The composite quantity, KARE, seems, in all cases stu-

died to be quite adequate for comparative purposes.

Topological analysis of data(ll)

Three main sets are identified in this work:
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(i) A set L of individual resonance energies donated by
individual benzene rings having particular locations in

the molecule. It is given by:

o i 2 i-1
L = {ri lri o i i I;(i+l-x)Rx =55 I; (i-x)Rx 5 L&dsid 5}

(11)

(ii) A set A comprising ARE’S |, a's ¥

A

{e} (2)
U{L |rci} (13)

{r2 » T3 s Ty 5 Tg s r;{ . ie)} (14)

A

L

where the last two values are regonance energies assigned to
triphenylene and pyrene respectively. df might be viewed as
the "basis get" for the computed values of ARE'S,

(iii) A set R, of actual resonance energies given by:
R = {Q! :¢=b§t_+0} {150}

Where @ 1is an actual resonance energy (say calculated by
Rendic, Dewar, etc.) ; a 1is it corresponding ARE, b is a

least squares slope and C is the corresponding constant.

The three gets are related as illustrated below:
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I

)
O e

paa
=

. (16)

X

[l
b=
1=

where a represents the highest computed ARE (compound 45)
The function I: is an operator that sums up appropriate
values of r; according to rules i-iii and eqn.(1). (or eon.
(6) using R*®). Th. results of this cperator function on
the five values of r 1is set A. The function f multi-
plies each value of a by a constent and then adds a
particular constant to the result. Set R is thus obtained.
Sets A and R might be viewed as two topological gpaces.The

function f has the following characteristics:

1) £ is continuous.

23 1 is also continucus.

3) f and L are "one-to-one", i.e. each g in A is related
to only one $ in R a&nd vice-versa. Isoconjugate systems
are counted as one point in the set.

4) f end £' are "onto" , i.e. each a in A and ¢ in R are

sccounted for. Therefore f and £ % are both bijections
and sets A and R are hemeomorphic. The graph of f is

given by:

{<a. b2 + D1 2 & 1} (17)
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Table 1

lesonance Eknergies and circuit Decompositiov of Benzenoid
Hydrocerbons (Numbers inside rings are their locations).

ARE, RRE, DRE, AIIRE, HRE,

1 ev. €V. ev. B ev.,
020

L.78 1.97 1.93 0.55 1.95
(1DR1 + 4R2 + 2R3)/5

2 g? 2.05 2.32 2.29 0.64 2.31

(16R1 + BRy + 3Ry + 2R4)/7

3

3 5% 2.23 2.54 2.48 0.6% 2.52

(20R1 + lOR?+ 4R3 + 2R4)/8

4 0999 2.23 2.54 2.48 0,69 2.52
(20R) + 10K, 4 4R3 + 234)/8

> A 2.24 2.5% 0.72
(22Ry+11Ry+TR 43R +2Rg )/9

6 @% 2.33 2.70C 0.75

(26R, + 16R, + SRB + 2Ry + RS)/lc

7 (2 2.34 2.68 0.80
AEII

(EBRl + 16R2 + 12R3 + 7R4+RS+R6)le



ol

8
2
Ry

(BOHT + 18R2 + 6R3 + R4)/11

12
Q8o
(BOH? + 18R2 + 6R3 + R4)/ll
o}
2
2
(36R1 + 16R2 + 6R3 + 2R4)/12
ol
)
(2123
2
{36R1 + léRg + BRJ + 2R4)/12
12

(40R, +POR2+1OR3+3R4+2R5)/13

[

3
0966

(40R1+20R

)

2+10R3+3R4+2R5)/13

(1Y)
e@

(4OR +20H +10R +3R +2R 3x3

(44R1+30R2+16R1+5h4+3R5+R6)/15

2.51

251

r

.01

2.08

2.68

2.78

RRE, DRE,

ev ev. B
.83 0.78
2.83

2.99 2.95 0.81
2.99 2.95 0.81
3.13 0.83
3.13 .83
3.13 0.83
3.15 0.87

ATIRE, HRE,

ev,

2.97
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ARE, RRE, DRE, AIIRE, HRE,

o ev ev ev B ev
eee \ 2,69 3.20

SOH +36R +20R +7R +2R5+2RS+R7){7

2.69 3.23 0.89
"eeef?

52R +21R +13R +10R +)h +2R 1/16

0990 2.69 3.23 0.89

{52R1+2lR +13R,+10R +5R +2R6)/16

19 y
9 .14 3972 0.98
RO

(76R1+40R2+20R +10R4+4R5+2R6)/21

@

O,

3

20
3.14 3,72 0.98
R @

(76Rl+ 40R,+20R +10R,+4R

3 475

EQZA. 3,18 370

(76R,+40R o+20R3+10R +4R +2R6)/21

+2R6)/21

eeo 237 2465 2,69
"%

(24R; + 12R,)/9

0 1,93 2,13 2.10 0.60 2,13
212
2

(12R, + ER, + 4R3)/6

2



24 ARE, RRE!

120 2.32 2.60
(2eR; + l4R, + TRy + 4R4)/9
25
2.34 2,07
EYAD
A3
(¢4Ry + 18k, + 12H3 + 6Rd)/1o
26
0 2.34 2,64
00
(24:»{l + 12R;) /9
27
3 .60 5,467
(12
(33R) + 20R, + 6Ry)/12
28
2 2,80 3.28
(2]1)
gee (50R)+ 22R,+ 3R3)/15
29
9 2,41 2,71
e
(26Ry + 5R2+5R3+2R4)/9
10 00 ZLEG
06
2]
(32R1+l432+BR3+R4)/ll
31 & 2.56 2.92
21212
ey

(32R1+1482+BR3+R4)/11

DRE, AIIRE,HRE,

ev, ﬁ

ev,

2.55 0.72 2.58

263 077 <.

2.62 0.74

0.84

0.89

e

2.65 0.79 2,65

2.85 0.79

2,87
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32 3 ARE,
3V,
o |
2.69
(42R1+14R2+5R3+BR4+R5 )/13
33 [3
2) 2.72
en
2]2)
(42R1+26R2 + 12R3 + 4R4)/14
34 ‘g 2.87
e -
an
2
(46R1 + 18R, + 5R3 + R4/14
35
) 2.84
oot
(52R) + 28R9+12R3+3R4+R5)/16
36 9 2.87
099%
(58R1+ 22R,+15R 3+ TR +5R+Rc) /17
37
068 292
(21113
€00
(60R) +48R + 36R 3+ 24R  +1 2R )/ 20
38 go 2.96
312
(68R1+30R2+8R3+7R4+4R5+2Rﬁ)/19
39 (3'3 a0
CIL12)

(™)
)

RRE,
ev,

3.12

3.1¢

3.21

3.33

3.37

3.39

3.51

DRE, AIIRE,HRE,
=V B €V,

3.06 0.4 3.08

313 (085 315

0.90

0.93

3.52 0.95 3.50
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(3) ARE, RRE, DRE, AIIRE,HRE,

e ev, ev, ev, B ev,
G0

23 3.14 3.61 0.97

(72:{1+34R2+12R +7R +4H +R, )/ 20

9 3,02 3.68
0990
(2
(76R +24R +14R +6R 9/20
9 (D 3.14 3,77
GL212]
(2
(86R. 1+28R,+12R 345K, +R )/22
1 3.32 3.88 1.04
9
(96R +34R,+12R +2R ) /24
3 3.62 4,24

G

0909

GRE
(140R1+90R +46R +4R4}/35

A 3.78 4.54
é)eo

(192R1+48R +26R +12R

()

4+2R )/ 40

*The slight difference between our circuit decomposition

«{6)

and that of Randic comes from the fact that the latter
neglects contributions from some of tne higher circuits ( R )i

these, however, donate very small, almost negligible, contribu-
tions,
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Annotations of the Editor:

{1 One of the referees pointed out
that the "generating graphs" defined

on page 3 of this paper are identically
the "characteristic graphs" introduced
originally by A.T. Balaban and ¥. Harary,

Tetrahedron 24, 2505 (1968).

(2) The figure captions have been added

by the editor.



