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ABSTRACT

The paper proposes a development of the method of finite
differences for systems with periodic structure. It is shown,
that the electron wave functions and energy levels in the Hii-
ckel approximation can be derived, solving a system of first
order linear homcgeneous finite difference equaticons. The ge-
neral relations have been made concrete on an example: the p-
polyphenyls.

INTRCDUCTION

There is constant interest in quantum chemistry towards
systems,constructed of repeating units.Pifferent approaches
to the subject from the standpoint of the Hiickel Molecular
Orbital (HMO) theory have been advanced [},2,3] «We show,
that the method of finite differences EF,S] allows a relative-
ly simple derivation of the IIMO energy levels and wave func-
tions for periodic systems,incorporating easily the most wi-
dely c¢ncountered boundary conditions:icyclic or Born-Karman
conditions and conditions for an open chain.The derivation
of the wave functions is a particular advantage of the me-
thod,allowing the calculation of a number of molecular guan-

tities,e.g.the elements of the bond-order matrix,etc,

CENERAL FORMLLATION OF THE METHCD
The secular equations of a periodic system,consisting of

N elementary units:

in the frame of the HWMO theory can be written as:
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B e

= Erq t B £t Be

=r+l1 = G , r=1,...,N (1)

where H is the Hiickel matrix of the elementary unit (if there
are M atoms in one unit,it is a MxM matrix),B is the matrix,
describing the interaction between the r-th and the (r+1)-th
unit -~ B is also a MxM matrix with L non-zero elements - L is
the number of bonds between the r-th and the (r+1)-th unit
cclls,gr is a M-dimensional column vector of the coefficients
for the atoms in the r-th cell and 0 is a M-dimensional zero
column vector:E‘is the transposed of B,

The boundary conditions can be represented as:

1)Born-Karman or "cyclic" boundary conditions

SreN T Ep (2)
2)Conditions,describing an "open"system
,-\J
Beyg=Bey,, =8 (3)

When M >»2L,which is often encountered, (1) can be reduced
to a system of 2L first order homogeneous linear finite diffe-
rence equations by excluding the coefficients of the atoms ,
which do not participate in bonding between neighbouring cells.
However,the derivation below shows,that such an operation is
not necessary and it is easier to solve directly (1) for an
arbitrary r .It should be noted,that there may be cases,in
which in the system (1) appear one or more second order fini-
te difference equations.These cases can be handled in the way
described below,taking a doubled unit cell,which reduces the
system to a system of first order equations.

In consistence with the general theory of finite differen-
ce equations{l& ].the particular solutions of (1) are given
by:

g = N uw o, ()
where A, is a complex number (in orderto obtain the non-tri-
vial solutions,it is assumed that X £ 0) and u is « complex
M-dimensional column vector,determined to a constant.

Substituting (4) in (1) it is obtained that

( X'¥+u+ XD u=ru=0 (5)

The condition for the existence of a nun-zero u leads to

the characteristic equation for (1):
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2| = | X'Tenmean] =o (6)

The expansion of |2| ,as defined in (6),leads to a po-
lynomial =qualion for A ,in which the powers of 1 range
rom -L to +L.Having in mind,that 7\ # 0 and multiplying by
>\1' one ohtains a polynomial equatior of degree 2L for A .
For every x (x=(°(—e)/ﬁ0,e is one of the MxN encrgy levels of
the polyrror,!.\oz-ﬂ,‘iev is the standard resonance integral)
this eguation has 2L solutions A.(x)l 14 $2L},not neces-
sarily different,One should note,that (6) determines also the
reverse dependence of x on l ,Solving (5) with respect to u
for every x and every R»(x).the corresponding system of vec-
tors {gj(x)‘ lsjé_zL} is obtained.gj(x) can be obtained
only with a precision to a complex constant.Finally,for eve-

ry x one can comnstruct 2L particular solutions of the type

(h):

gpylx) = xg(x) 300, g=ty.e2l (D)

Using the fact,that the determinant of a transposed mat-
rix |§| = |£‘ ,it can be obtained that:

el = (E] - |XB+E:2B| - IXBru+ 8-

= CXHMB e X8| =0 (8)

The comparison betwcen (6) and (8) shows,that ;l_—t satis-
fies the same equation as A .Hence,if A is a root of (6),
9_"1 is also a root of (6).As a direct consequence,the roots
—i ?\j(x)l lgj.éZL.S can be ordered in couples:

lzk-t"‘) = exp(i'&‘k(x)) 5

A o (x) = exp(-iﬁk(x)) i K = 1,000,L°(9)

where ’19’k(x) is generally a complex number,

Using (9),the expression (5) can be written as:

(exp(-iﬂk(x))g + H + exp(i'g‘k(x))_ﬂl EZk-i(XJ =10
(exp(i'\g'k(x))g + H + exp(-ﬁ‘k(x))g ) EZk(x) =0 (10)
for k = 1,...,L.
Hence:
*
EZk»l(X) = Uy (x) = » (x) (11)

(we assume,that g,,k_l(x) and _\_1;;(()() are determined with a pre-

cision to one and the same complex constant).
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The general solution of (1) can be represented as a linear

combination of particular solutions (7):

gr(x) E ay 1()&) exp(:.r'l} (x)) uk(x) +
+ (x)(exp(:tr‘l? (x)) m x)) (12)

The coefficients in the expansion aj(x) | 1$j__2L}
have to be determined from the bourdary conditions (2) or (3)
and from the normalization condition:

2 _g:(x) gr(x) = M.N (13)

BORN-KARMAN OR "CYCLIC" BOUNDARY CONDITIONS
The condition (2),applied to (12),requires that:
exp(i(r+®) B, (x)) = explird (x)) (14)

As a consequence,there are N different values of 'Tak(x).
k(x):Zm‘h’/N =’19'm ; m = 1,,.4,N (15)

leading to different values of {&ix) ! 1£k& L} as defi-
ned by (9) (x also varies).

Up to now the discussion proceeded as if we knew the ener-
gy values e and consequentl& - the spectrum of x .The fact
is that we do not know them,but we know the spectrum of 'ﬁk(x)
(see (15)).As it was already mentioned,(6) determines not on-
ly the dependence of A on x ,but also the reverse dependence
of x on A ,resp. ) .Introducing A as defined by (8) and
(15) in (6),one obtains:

|exp(-i'gm)’§’+ H + exp(i’lg'm)}l | =0 (16)

(16) represents a polynomial equation of degree M in res-
pect to x.Solving this equation for the values of 19& i from
(15),the spectrum of x is obtained:

{{xpn | 1¢menYl1endny

The index n denotes the roots of (16) for a fixed m .

(16) can be shown to hold also when the system (1) contains
linear homogeneous equations -of order,higher than 1.

Equation (16) has been derived also in [ 3] , using the
theory of the infinite Jacobi matrices,and in[ﬁ :l - uging the

properties of rotagraphs.



As it was noted before,equation (G) in respect to A has
for every x 2L roots,coupled as shown in (9).If the root

x is non-degenerate,it is obvious that when x = x

m'n' ‘m'n!
(6),resp. (16),is satisfied by only one value of d ﬁ =
_d . (15) Jmplleq,that‘ﬁ changes only with the varlation

of m.whlch means, that for a non—degunerate X gt it must be
fulfilled:
13 (xm'n' . {%m, i k=1,.44,L

As a consequence,the expression (12) is simplified to:

TR I T explirth ) ulx_, ) + (17)
¢ Blx L ) expGir D) alx, )
(here ulx_, ,) = gk(xm.n,) s A(xm,n,) = L'“Ek-l(xm‘n') 5
Bx 1) = Leag Ox 1) 5 K=1,000,1 ).
It is convenient to choose B(xm.“,) = 0 and one obtains:
e (x . 0) = Alx, ) explird ) mlx_, ,)(18)

When the discussed eigenvalue is K-fold degenerate,one
obtains in (12) a linear combination of K expressions like
(1?),corresponding to the different values of my,n for the de-
generate levels.The coefficients in this linear combination
must be chosen so as to produce K lincarly independent wave
functions for the degenerate levels.A possible choice,when
the degenerate levels correspond {o different values of m
(for example,consider lhe pairs ‘65'13N_5 ;8=1,.44,BE((N=1)/2))
is indicated by (18).However,the degeneracy of levels within
a constant m (for different values of n) complicates the
treatment and requires generally the existence of more than
one acceptable sulution for Etxmn)'we shall not discuss this
case further here,but it is possible lc¢ show that a solution
in the form (18) is again satisfactory.

Sunmarizing, the wave function in the case of Born-Karman
boundary conditions is characterized by:

(x00 = Al ) exp(ilam) alx ) (19)

<
-1 mwn

Al oY
nn

(13),which i

"

defermined fror the normalization condition

this case simplifics to:

&:(x ) u+(xmn) E(an) = M (20)
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CONDITIONS,DESCRIBTNG AN "OPEN SYSTEM"
Applying (3) to (12),one obtains:

=

L Lo ~
eqlx) = :—2;1 ay_1(x)B w {x) + a, (x)B E:(x) = 0 (21)

L
cyaq(x) = a (x) exp(i(N+1)P (x)) B u (x) +
N+1 ~4 %2k-1 K B

[=-]

+ ag (x) expl-i(N+1) D (x))B wilx) = 0 (22)

(21) and (22) form a system of 2L equations for {_aj(x)l
153 -’:2L} +Let us introduce the L-dimensional column vectors

£.(x) = (B w (x)),
h (x) = exp(i(N+1)% (B w () (23)

k = 1,...,L
where by c=contracted we mean the vectors (L-dimensional),ob-
tained from the M-dimensional E'gk(x).resp. B Ek(x) by cross-
ing out all the elements,equal to zero.
Using (23),(21) and (22) can be written as :
W(x).alx) = 0 or

E(x)W(x) =D (24)
where x - B
wix) = £,(x) £,(x) £,(x) £,(x) ... £ (x) £ (x)

B (x) Bf(x) hylx) B¥(x) +o0 By (x) B(x)

A(x) = ( al(x).az(x)....,azL(x) )

0O is here a ZL-dimensional zero column vector.
The condition for the existence of a non-zero solution of
the system {(24):
|geo| - o (25)
together with the equations,obtained from (6) for every
A.,resp.’ﬂ ygiven by (10):
| exp(-i}, ))B+ 1 +exp(ith (x))B | = 0 (26)
K 2 1,000k

ferm a system of L+1 equations for x and % ywhich

k
allows the determination of the energy spectrum of the polymer.
If after the solution of this system one finds a(x) from (24),
after a normalization (13),(12) gives the values of the coef-

ficients ¢ (x).
=r



As it was already mentioned, 19k(x) are generally complex
numbers.The study of the conditions for the existence of com-
plex {3k(x),however,shall be the subject of another paper.We
would like only to point out here that the existence of com-
plex a‘k(x) is generally connected with the existence of local
energy levels.

Other possible approaches to open systems are:the transfer
matrix method [1 ].the polynomial matrix method [ 2] , the
perturbative treatment,proposed by EC].In our opinion,the fi-
nite difference formalism,proposed here,is more expedient.The
possibility for exact calculations of open systems of arbit-
rary length,having more than one bond between the elementary

units,is another advantage of the method.

AN EXAMPLE - THE P-POLYPHENYLS

Our example will be centered on an "open" system,where
the calculative difficulties are relatively graver.

It is usefull to classify the MO's in the p-polyphenyls
according to the plane of symmetry g :

e it

2t 3¢

We shall begin with the MO's which are symmetric with res-
pect to g .Chosing a numeration of the atoms as shown above,

it is obtained:

H® = /x 2 0 o ,B5= fo 0o o o\ , uf = uz

2 2x 2 0 0 0 ¢ 0 u2

0 2 2x 2 0 o o0 o© ug

0 0 2 x t 0 € O uy
Mlere x = (K- e )/ﬂo , £ = ﬂt / ﬂo

From (6) we obtain:
-

[p®] =] X7'B% + 8® + AB®| - (27)

3 ile® « 5 2957 4 2% - Ml & WIS 58
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From (9):
Ai = exp(i’!ﬁ) , ;\2 = exp(-il) (28)
{ 4 stands for 7j1(x) ) .Substituting (28) in (27):

:p(ll - (5 + tz)x2 + tz - it cosl% + & =0 (29)

The next task is to find uj(x),vhich we shall denote sin-

ply as u

»*
S;gg(x) =(Bi(x)) =(u®)* .Becanse u® is determined to
a constant,it is convenient to choose uz = 1.Solving (5) un-

der this condition,it is obtained that:

uf = G X - 1)« 20 - =)

s -1 2

u, = (1 + tATW(x" - 3) ,

w = (1 tATN/0Gx - ) - 1/x, up =1 (50)

Substituting (30) in the boundary conditions (21),(22),we
obtain for (24):
~ -
al(x) = ( al(X) g az(x) )

W) = [, (texpCid)(x®-1) + 2explitirnt)
3x - x3
1 (t exp(:i.‘l})(:yc2 -1) + 2)exp(-:i.(N+1)Z?')
Ix - 13 (31)

Hence,from (25):
const.lg(x)l = sin(N + 1}'\9‘ + t(x? - 1)sinnP/2-0 (32)
(24) allows to obtain alsoc that
al(x) = - a,lx) = alx) (33)
The system (29),(32) determines the energy levels,corres-
ponding to symmetric M0's.The coefficients of the wave func-
tions can be found from (12),(30) and (33):
el
) t{x- - Dsinlr-DP + 2sinrd
Ix - x3
tsin(r—l)'lj + sinrfﬂ

Er(x) = bix

ny )

5
1,5;;1-1(1;--1)15l + s.inr'LSZ - sinrlg

2X = X X

sinr‘tﬁl



b(x) = 2ia(x) is determined trivially through normalizati-
on.
The solution for the orbitals,antisymmetric in respect to
g ,leads to roots(here one does not need the finite differe-
nce method}:

a a
m,ﬁ =3 t m = $,00e,N
and corresponding orbitals - any normalized linear combinati-

on of

% v
Vi =8y = @E'r % PBr - ‘PS'r g Wb R

for the bonding antisymmetric MOC's and of
¢t = far - Wioss = IR T R
for the antibonding antisymmetric MO's.In each of these cases
the total number of linearly independent MO's that can be con-
structed is N.
E'?] represents another example of application of the me-

thod,outlined in the present paper - to polyenes and annulenes.
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