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1, Introduction.

In my talk on lattices of stability spaces I had to mention the recently intro—
duced concept of the extended integrity basesl—a, which is a generalization
of the well known concept of integrity bases of invariants7. In view of sub—

sequent discussion and critical remarks I would like to review here briefly

the present slate of the theory with special accent on the practical calcula—
tion of these bases.

The subject of the theory is the algebra ®(Ln) of polynomials p(x) on
a linear space Ln, X = xlel+x ot e +xnene Ln, on which a finite group G
acts as a group of linear operators. In a chosen basis {e of L ; the action
of the group G is given by its matrix representation r (G) gp—-D(g), and
ge, = D (g)e. We say briefly that L is a G-module or, more specifically,
a )((G)—module, where X (G): g—=X"(g) = Tr D(g) is the character of
the action of G on Ln. The algebra @(Ln) is also a G-module, where the
action of g € G on p(x) is defined in the usual way by gp(x) = p(g—lx).
The algebra is also a linear space and as such il splits into subspaces
O(I.. , k) of homogeneous polynomials of degree k.

The degrees k provide a natural grading: @(L ) - EB k), and
k=Q
(P(Ln, k)@(Ln, k?) = q) (L , k+k”). We shall work here only in the field of

complex numbers C, whence (Ln, O) = C, It is further g)(Ln, 1) - Ln - the
space of linear functions on L {an adjoint space to L, ) which is a /P*(G)—-mo—
dule, because the acticn of g€ G on Ln’ in a basis { "J adjoint to the basis
{ei\ of L a? is expressed by matrices D(g) = D (g 1) adjoint (reciprocal and
Lransposed) to matrices D(g) gx = D (g)x. Accordingly, the spaces
@(Ln. k) [L } are the symmetrized powers of L and hence [A‘k*(G]-mo—-
dules. For further discussion we fix a full set of matnx ireps (irreducible re—
presentations) ‘_;(G): gr— D(ﬂ)(g) of the group G and, following Weylg,
we say that a set p Lol (pdl,pqz. — ’paldq)’ dy = dim ;\’O‘(G) = Aule),

of polynomials Poi in x, which transform under the a;:}ion of the group G in
the same way as the basis x ., for the adjoint irep r((}) g.——ND(o‘ (g)

ie. gpd = DJE )(&,)p it is a polynomial r(G)—covanant (relal.lve invariant in
case of one-—dlmensxonal ireps, invariant in case of the identity Jrep). Each

LS
‘:\(G)-—covariant defines a Ay (G)-module — the linear envelope of its com—
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ponents, Covariants themselves form linear spaces (.P(‘*) (L ) which are com-
posed of spaces (p & (L , k) of homogeneous polynomial \’; G )~covariants
of degree k. Invariants form a space (‘P.‘L(Lh) which is also a subalgebra of
the algebra {P(Ln).

As a first step towards the theory of extended integrity bases we shall
consider the linear homogeneous bases of spaces of covariants (including the
algebra of invariants considered as a linear space). The linear envelope of

components of all these covariants is the whole algebra (P(Ln)'

2, Molien series and consecutive Clebsch-Gordan multiplication.

Let c(d)(Ln. k) be the numbers of linearly independent [;(G)ucovariants, he-
mogenous of degree k. This number is the multiplicity with which the irep of
the class AJA(G) is contained in the symmetrized power [A"k((})_] . A compaci

way for calculation of these numbers has its origin in Molien relationg:
(el

1
(1) e (v e ) B ;[;(“(g)]xk,

where ?\. is an indeterminate, From the orthogonality of characters one obtairs
the numbers c(d)(L , k) at once as coefficients at k—th degree of the indeter~

minate A in the function:
[<%a]

Aj‘*(g) Z
(2) F&(Ln")\) - -13'1— gZG T 6 e B - c(d)(Ln, K} AKX
These functions are called Moglien functions and the right hand side is

the Molien series. The actual calculation of homogeneous bases of covarianis
can be most suitably performed by consecutive use of Clebsch—Gordan multi-
plication according to tables of Clebsch-Gordan productslo. Such approach is
useful in tensor calculus where our interest is limited by a finite rank tensor.
The Clebsch—Gordan multiplication has been used to calculate and systemize

tensorial covariants up to fourth rank for the magnetic point groupsil.

3, The minimal extended integrity bases.

Further we suppose that the order N of G and the dimension n of L are
finite, It is well known that the algebra (L ) of invariants is then tinitely
generated7 The finite set J:l.’ J2, SevaE: U .J'm of invariants in x which generate
the algebra CP (L ) in the sense that any other invariant J is expressible as
&a polynomial P(Ji) in this set is called the integrity basis of invariants. It ap-
pears that spaces of covariants which, as linear spaces, are of infinite dimen-

sions (J.f not vcid), are also finitely generated in the following sense: There
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exist finite sets pl 1 Py T ey pr(nq) of rli(G-)—covariants, such that any
(a)
() . 4L . .
o pa(Ji)pa with coefficients Pa(.]j) from the algebra of invariants.
We shall use here the terms linear integrity bases of covariants for the:
sets of generaling covariants and extended integrity basis (of algebra fP(Ln)

other VA(G)ucovariant p is expressible in a form of ’linear combination’

with respect to a chosen set of ireps of G) for the integrity basis of invari-—
ants together with linear integrity bases of covariants. As far as I know, the
finiteness of linear integrity bases has been first proved by McLellan for sub-
groups of Coxeter groupsl. I have proved it first for the case of abelian fini-
te g1‘0up52 and later for the general case of finite groups4. My proof grounds
on the use of a constructive algorithm which consists of consecutive Clebsch—
Gordan multiplication of covariants with elimination of those invariants and co--
variants which are already expressible through invariants and covariants of
lower degrees, This algorithm is also suitable for actual calculation of exten—
ded integrity bases, The bases obtained in this way are the minimal extended
integrity bases. Construction of the minimal bases does not solve the problem
of polynomial invariants and covariants completely — the minimal bases do not,
in general case, generate the invariants and covariants in a unique way, To

explain the problem of uniqueness, let us briefly consult the literature.

4, Cohen—Macaulay algebras and modules,

The first basic result states, that the number of algebraically independent in-
variants in lhe algebra CP:L(Ln) equals just n - the dimension of the space

L 12. Let the set of these, so called free invariants, be 1, 12' seser 3 ln' The-
se invariants generate the free algebra fj)f - {p(li. 12, wsin 5 ln) which is a
subalgebra of ('Pl(Ln)' It has been further shown that the free algebra Cpl'
coincides with the whole algebra Cpl(Ln) if the group G, as a group of line-—
ar operators on Ln' is a Coxeter group, Le, a group generated by reflecticns13.
More precisely, the algebras coincide, if and only if the group G is generated
by pseudoreflection514. Generally, the algebra of invariants contains also a

set of so called transient invariants El’ Ea, wews 3 E such, that any polyno-—

k
mial invariant is uniquelly expressible in the following way 15:
k
(3a) Po(Ij) + aZ_I Pa(lj)E:a "

where 1 are invariants of that reflection or pseudoreflection group into which
the grol:',lp G can be embedded. For a reason which will becomeapparent in
next section, the invariants I, are also called denominator invariants while the
invariants Elj are also called numerator invariants.

An analogous result for covariants has been first obtained for the sub-
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groups of Coxeter groupsl, then for the subgroups of groups generated by
pseudoreflections ., and finally for the general case of finite groups 17. The
result states that there exist such basic sets of G(G)—covariants plq i p;‘j
— pk: that any other Q(G)—covarjant can be uniquelly expressed as:

(o)

(3b) P (1)p,
a=1l

where in coefficients P (I) only the free invariants appear, so that the coef-
ficients belong to the Eree algebra g> Both cases (3a) and (3b) can be uni-
ted in a statement that the algebra of invariants and the spaces of covariants

are expressible as:

(2a) @l(Ln} = fPf.(lg; EL@®E,D wu B E ),
(ab) @(d)(bn) = g)f.(pid)@ péq) @pﬁd‘))

Algebras and spaces of this property are called Cohen—Macaulay algeb-

ras and modules or free generated modules over the free algebra @

¢
To distinguish the extended integrity bases which le ad to unique expres

sions (3a) and (ab) we shall call them the canonical extended integrity ba-

sas. It is clear that the canonical bases contain the minimal ones and can
be derived from them. This, however, requires an additional analysis of alge-

braic relations between invariants and covariants.

5. The canonical form of Molien functions — denominator and numerator

invariants.

It follows directly from (3a), (3b) or (4a), (4b) that Molien functions can

be expressed in the following form which will be called canonical form:

(5) F,(A) = N (/D). B, (\) = N, (WD),
where

o) = (- B9 - 18 e 1 —~27 .
(6) N =1 s 34 5 TR et B E

P P, P
N = AT ATE e A

and the powers ql’ Q2 swes Op indicate the degrees of free invariants, pl, P
eeee P the degrees of transient invariants and Py g1 Pyor s po\k the deg-—

rees of basic r(G)—rcvamants Herefrom also the allernative namew. denomi-
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nator and numerator invariants.

Molien functions can be calculated from characters and eigenvalues of
mairices corresponding to group elements and then brought to the canonical
form which indicates the ’possible’ structure of canonical extended integrity
basis. The problem is that there may exist more than one canonical form
and even such canonical formsmay exist which do not correspond to some
canonical extended integrity basis. A 'conjecture’ that Molien functions de—

termine the integrity basis of invariants has already been made o and sub-

sequently rejected in view of a counterexample 19.

6, Fundamental algebras and extended integrity bases of irreducible matrix
gFOIJES-

So far we have followed the usual approach, in which the group G is consi-

dered as the group of linear operators on a certain space Ln. it is of great
advantage to consider G as an abstract group and to investigate the problem
of extended integrity bases simultanecusly for all possible G-modules,

Of primary importance in this approach are the fundamental algebras
{P (Ld) defined on minimal (irreducible) *d(ci)—modules Lo\ and their ca-
nonical bases —6. Both the algebra (Ld) and its canonical basis are de-
termined by the irreducible matrix group Im G(G) The matrices of this group
form a faithful irep of the factor group 3{.*= G"Hd' where H, = ker l:L(G)
According to r(zpresenta}ion generating theorem there exist polynomial Q(Xd)-
covariants to each irep %’

a
G these covariants are the G(G)—covariants, where E‘(G) is the irep of G

(}ed) of the group afd. With reference to the group

engendered of the irep F‘;S(B(d) of ch. The group G can be here a normal ex—
tension of any group Hd\ by the factor groupae- .

To calculate the canonical extended integrity basis of any algebra (P(Ln),
where Ln is a a’ (G)—-module, we need to know only the canonical bases of
fundamental algebras q)(Ld) relevant to the group G, and the Clebsch-Gordan
multiplication table for this group, Then we proceed as follows: The space L!
splits into a direct sum of ny (the multiplicity of /Té((_‘x) in A”(G)) minimal
h((})-modu.les L . €ach of which forms an algebra g)(l'da)' The whole al-

41

gebra {P(Ln) is the direct product of all @(Lﬂa). The algebras T(Lda) are
just copies of the algebra @(I"ot)' The copies of free invariants are free in—
variants in ('P(Ln ), the copies of transient invariants are also transient inva—
riants and, of course, we obtain also the copies of covariants. In addition to
all these invariants and covariants which are obtained by copying from fun-—
damental algebras we have lo add all invariants and covariants which are
obtained by Clebsch—Gordan multiplication of bases of fundamental algebras.
The bases thus obtained will be the canonical basis of the algebra @(Ln).
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Polynomial covariants obtained in this procedure are not only homoge-—
neous on Ln, they are homogeneous on each of the spaces L a It is, accor-

dingly, possible to introduce the Molien functions of fine grading, with indeter—

minates ’Ap(a for each space Lu(a' ‘The calculation of these functions from Mo~

lien functions of fundamental algebras can be performed by consecutive use
3,4

of the formula H

() Fy(L @L,: A hy) = E - (@ Bg)E (L, 11)-%(%’ Aoh
ah[\;

which holds if the spaces Ln and Lm are distinct and in which (o((jﬁ) are
the reduction coefficients.

B E L, 2g) = MUk ID(R,) and B (L, A ,) = NF,(AZ)/D(}Q)
are in their canonical form corresponding to an actual canonical basis, then
E\K(Ln$Lm’ A v A 2) - NB()l 1,?(2)/D(?\1,}2) are also in the canonical form,
where D(')\l,?\Z) = D()\l).D()(z) and

(8) N A 2 RQ) = Z(s (ot 1N, (A 1).N(B(‘A 5
“l

Moreover, this canonical form describes an actual canonical basis of the al-

gebra {.—5) (Ln$ Lm ).

7, Discussion,

Let us now discuss the existing methods for calculation of the canonical ex-
tended integrity bases, 1, The method of McLeJ_lé\nl'6 is based on embedding
the group G, as a group of linear operators on Ln’ in a pseudoreflection
group. This method is perharps the most rigorous (there are no problems
with correspondence of Molien series and bases in canonical form). It requi-
res, however, a special consideration of each G-module Ln' 2, Patera et al
start from calculation of Molien series for the fundamental algebras. The Mo-
lien functions are then brought to the canonical form and the canonical exten—
ded integrity bases calculated by brute force with help of the knowledge of
numbers and degrees of its elements, Despite the fact that canonical bases
of fundamental algebras for all images of ireps of ordinary and double point
groups have been calculated in this way, there are two weak points in it we
have no guarrancy that the canocnical form of Molien functions corresponds

to the basis and even if it does, the corresponding members of the basis
cannot be calculated ad hoc., 3, My method is based on the use of algorithm
which employs the Clebsch-Gordan multiplication tables 2’4'5’10, As already

said, this algorithm leads in the first instance to the minimal bases. Let us
notice, however, that in cases so far calculated, the minimal bases of funda-
mental algebras coincide with the canonical ones.
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In my opinion, the most promising and effective approach to the calcula—
tion of canonical extended integrity bases for fundamental algebras is the com-—
bination of Clebsch—~Gordan multiplication with Molien functions. Both the cano-—
nical bases and Clebsch—Gordan multiplication tables are already known for
the ordinary and double crystallographic point groups 23,10 so that the cano—
nical extended integrity bases can be calculated for any representation of the-
se groups. The knowledge of the covering groups and projective representa—
tions of crystal point groupszo and the approach to representations of space
groups via images of ireps of little groups, presented by Prof, Michel and
Prof. Mozrzymas at this meeting, will hopefully enable us to extend the theory
to space groups, adding a new powerfull apparatus to the theory of their rep—

resentations and to the theory of interactions in solid state.
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