mafeh no. 1 pp. 35-43 1981

EXOMORPHISM OF GROUP SUBGROUP RELATIONS

AND LATTICES OF STABILITY SPACES

Vojt&ch Kopsky

Institute of Physics, Czechoslovak Academy of Sciences,
Na Slovance 2, POB 24, 18040 Praha 8, Czechoslovakia

(Received March 1981)
1. Introduction,

The study of subgroups of the space group is an important part of the space
droup theory, especially in connection with the theory of structural phase tran-—
sitions, crystallographic twinning, domains and domain walls., The available in-
formation on subgroups of space groups 4 is based on the theorem of Her—
mani e (which is a direct consequence of the 'diamond’ isomorphism theorems)
and consists in lisling of maximal equitranslational and equiclass subgroups
and converscly of the minimal supergroups..

The purpose of this contribution is to discuss some aspects of the the-
ory of group subgroup relations connected with a new itrend in investigations
of subgroups of space groups which can and should be opened and which
relates tho theory of subgroups with the theory of representations. The first
step has, in fact, already been done by Ascher4 who has shown that the
problem of a structural phase transition from the symmetry of a space group
to ils subgroup can always be solved in terms of a certain finite group - the
image of the representation of the transition parameter. His epikernels of ireps
(hcre we mean by irep a representation irreducible on the real) are sub-—
groups of primary importance. It can be shown that every subgroup of a fini—
te group can be expressed (perha.rps in several Ways) as an intersection of
epikernels of its ireps 5.

We shall, for simplicity, limit our present discussion only to subgroups
of finite groups, The resulls can, however, be applied in consideration of tho-
se subgroups of space groups which are themselves space groups of the sa—
me dimension. Three points connected with the subduction of identity represen—
tation will be discussed here: 1. Exomorphism of group subgroup relations,
which is just an cquivalence with respect to all aspecis of the subduction of
identity represcntation. 2, The stability spaces of subgroups for which we
show that they form lattices dual to the lattice of subgroups. 3. The problem
of generation of stability spaces, which can also be formulated as a problem
of faint interactions’ in the phase transition theory 6. There is also a connec-—
tion of this problem wilth the theory of extended integrity bases, which is brief—

iy reviewed in another contribution of this meeting.
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2. Group lattices.

Subgroups of a given group G form an algebraic structure ZE.(G) called the
group lattice. Since the language of lattice theory is convenient for our pur—
poses, we shall recall some basic notions 3'7.

The lafttice is generally defined: (z) either as a partially ordered set

with least upper and greatest lower bound for every pair of its elements, or

(ii) as a structure with two algebraic operations — union and intersection —

which salisfy the idempotent, commutative, associative, and absorption law.

It can be shown that both definitions are equivalent and the least upper bound
can be identified with union, the greatest lower bound with intersection. Accor-
dingly, we can define isomorphism of two laltices or automorphism of a lattice
as mappings which preserve either the inclusion relations or both unions and
intersections. Analogously we define duality of lattices as a mapping which
reverses all inclusion relations or which interchanges all unicns by intersec-
tions and vice versa.

The lattice £.(G—) of subgroups of the group G is a lattice in which the
inclusion relation (— and the intersection FNK of subgroups F and K have
the usual set-theoretical meaning, while the union F|JK is that subgroup of
G which contains all possible products of elements of F and K. Each auto-
morphism of the group G defines an automorphism of the group lattice i,((})
Other lattice automorphisms are not of interest for us.

The lattice & (G) of a space group is an infinite lattice. On the other
hand, any subgroup F of G which is a space group of the same dimension
is of finite index in G. I F itself is not normal, then there exists a set of
conjugate to it groups Fi' The intersection H = core F = O Fi is normal in
G and, in fact, it is the greatest normal subgroup of G contained in F (and
hence also in all Fi). The symbol core F means the kernel of the permuta-—
tion representation of G on cosets of F 4. The group H is also of the same
dimension as G, hence of finite index in G, the factor gréup H = GfH is the-
refore finite and trere exists a ’canonical epimorphism’ JU: G —==3¥ , which
maps any subgroup K of G containing H onto the subgroup J‘(’. = K of the
factor groupx . Vice versa, to each subgroup}{ of # there exists a subgroup
K of G which contains H and for which WK -5{ . Hence any subgroup K of
G can be embedded into a finite sublattice i(G/H) of the lattice £(G), and
this sublattice is isomorphic to the lattice i(a(), the canonical epimorphism
31 maps this sublattice onto the factor group lattice: G{i(G/H) = :E(«K). The
sublattice defined by the normal subgroup H = core F is the least such sub-

lattice in which F can be embedded.
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3, Exomorphism_of group subgroup relations.

Let us say for brevity ‘'symmetry descent’ GIF instead of relation of a sub—
group F to the group G, We define the following equivalence of symmetry
descents:

Definition 1: We shall say that two symmetry descents GiF and G{F
are exomorphic , if the following two conditions are satisfied: (i) the factor
groups f = GfH and i= G/fH, where H = core F, T = core F, are isomorm
phic, (ii) among the isomorphisms of these factor groups such isomorphism
c: ——& exists, which maps the factor group F = F/H onto the factor
group F w /A = F.

This definition can be illustrated by the following diagram:

G H—— e Ko T
A N
PS‘LB_'G“T_L—F—‘
\\C/ g/

I 1 x
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where ¢ and J_ are canonical epimorphisms which map the groups G, G onto
the isomorphic factor groups H and 3f__ , and 0 is the isomorphism satisfying
the condition (ii). Excomorphism is evidently an equivalence in the mathemati-
cal sense and can be used to distinguish classes of equivalent symmelry des-—
cents -~ the exomorphic types of symmetry descents. Exomorphism has been
first introduced at the Crystallographic Congress in 1978 8; consideration of
crystal point groups reveals enly 44 types of symmetry descents (excluding
the trivial one).g‘ To these 44 types belong 212 geomefrically inequivalent
symmetry descents within the crystal point groups, 1532 within the magnetic
point groups and thousands of actual symmetry descenis within the space or
magnetic space groups.

Application of elements g of G from the left on cosets giF of the group
F permutes these cosets and defines therefore a permutation representation
of the group G with kernel H = core F. It can be shown that the symmetry
descenis G{F and EJ—E_‘ are exomorphic just if the permutation representa—
tions of G on cosets of F and of G on cosets of F are, as permutation
groups, equivalent. It is also worth to mention, that permutation representation
of G on cosets of F is just the representation of G induced of the identity
representalion of the group F.

Let us now look up the situation from the viewpoint of lattices. The first
condition of definition 1 requires that groups F, F can be embedded into sub-
lattices i(G/H) and i(a/ﬁ) which are isomorphic in strength of the requi-
rement of the isomorphism of groups H and 3._{’, . Within the lattice f(G/’}{) we



= BH =

find easily all subgroups F:i' such that the symmetry descents GJF‘jj are exo-~
morphic. To satisfy the second condition of definition 1, we have to apply all
automorphisms of the groupaf. to the subgroup F . This leads to a set of sub-
groups ?ij (i indicating inner, j an outer automorphism). To groups ?ij then

correspond the groups Fj; in the lattice i(G/‘H).

4, Subduction of identity representation and stability spaces,

It )(d\(G) is the character of an irep of G and F the subgroup of G, then the
branching rules:

X LGNF = % (o) Xy (F)

inform us, how many times an irep A’%(F) of F is contained in the represen-
tation /Y‘*(GNF of F subduced of the irep A’d(G). Let us denote by sq(F) =
= ( 1)F the subduction coefficients for the identity irep of F; Sok(F) is there-
fore the number of times the irep A/i(G) subduces the identity irep of F. Furt-
her we introduce a G-module Lo which contains just once a /‘t';(Cr)—module Lol
for each irep )[’d(G).

Definition 2.1: The subspace of LO which envelopes all vectors of LO,
invariant under the subgroup F, is called the stability space of F and wil
be further denoted by Ll(F).

Definition 2,2: 1If Ln is any G-module, we call its subspace, on which F
acts trivially, the stability space of F in L and dencte it by Lnl(F)' Particti-
larly, the spaces L, will be the stability spaces of F in minimal ;{’A(G)—moa-
dules L,. The dimension of these spaces is evidently just SO((F) = dim Lou{F)
and their direct sum is the stability space Ll(F‘).

Theorem 1; The subduction coefficients sﬁ(F) satisfy the relation:
g Sm(F)'dd = [G:F] »

where dD( = dim L, and [G:F] is the index of F in G,

Proof: According to Frobenius reciprocity theorem, the subduction coef-
ficients so((F) give also the number of times the identity irep ;Y'l(F‘) induces
the irep A’d((}). The dimension of the laiter is just dy and hence the left—
hand side of the relation gives the dimension of the space on which the rep-
resentation of G induced of )(1(5‘) is realized. Since this representation is
also equivalent to the permutation representation of G on cosets of F, ils di-
mension must be [_G—:F‘].

Each subgroup F' of G can be characterized by the set of subduction
coefficients s(F) = (s5,(F)=1, 8,(F), oo , 5,(F), weee)e The sum of these
coefficients is evidenily the dimension of the stability space L:L(F)' If Ln is
any X (G)-module, ny the multiplicity with which A(G) is contained in X'(G)
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then the sum std(}:\)'”a( is the dimension of the stability space th(F) of

F in Ln. The stability space of the group G itself is simply the space Ll(G)=
- Ll which contains only a representative of invariants of Gj accordingly the
Lr\l(G) is the subspace of invariants of G in Ln' I KCFCG (Lhe inclusion
relation referring to proper subgroups), then from lhe definition of stability spa-
ces and from the relation of theorem 1 follows Ll(G) = L1C Ll([")c Ll(K)_.
where the inclusion relations refer here to proper subspaces. We may consi-
der this inclusion relation as a defining relation for the ordered sel of stabi—
lity spaces, obtaining at once the following conclusion:

Theorem 2: Stability spaces L (F) of subgroups F of G form a lattice

1
which is dual toe the lattice i(G) of subgroups of G.

Notice, that the theorem does not hold generally for stability spaces of

F in any Ln’ but holds certainly for all Ln which contain LO.

5. The lattices of stability spaces.

The theorem 2 follows from the fact that the inclusion relations for stability
spaces are reversed in comparison with inclusion relations in the lattice i,((}).

It means, accordingly, that unions and intersections are exchanged, so that:
L, (FUK) = L (F)NL (K), L (FNK) = L (F)UL, (K).

So far we have to consider these relations as formal ones and it is ne—
cessary to reveal the meaning of the union and intersection in the lattice of
stability spaces in terms of linear spaces, or rather in terms of these spaces
as G-modules.

We have already made a natural choice of the meaning of inclusion re-
lation and it is guite straightforward to show that the intersection of stability
spaces has also the ordinary meaning of intersection of linear spaces which
coincides with sei-theoretical meaning of the intersection,

The meaning of the union of stability spaces is more complicated. A ri-
gorous analysis requires introduction of linear oper‘atorsn which project G-
modules onto the *O(G)—module LO, leaving the transformation properties of
vectors invariant, so that () (ex) = g{2(x). The union Ll(F)UL:L(K) can
then be interpreted as a projection, by such an operator, of the space of all
tensors formed on the direct sum of Ll(F‘) and Ll(K)' We shall discuss this

conclusion in connection with generation of stability spaces.

6, Stability spaces of normal subgroups and their generation.,

Let H<IG be a normal subgroup of the group G and ¥ = GfH the correspon-
ding factor group. Then the stability space Ll(H) can be identified with the
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space LO(}[), which contains just once each /’VK(E{ )-module Ly for the irep
Ay (). Each )(h(ik)—module Ly

where )(K(G) is the irep of G engendered of the irep Afﬂ('aC) of & . Thus the

can be inferpreted as a ){(G—)—modulc,

stability space is simultaneously a G-module and a f —module and it contains
all G—~modules L?S the wvectors of which are invariant under H.

According to the representation generating theorem 10, a faithful repre—
sentation /Y,\(G) of the group G generates all ireps A‘V(G) in the sense, that
each irep )(B(G) is contained in some finite power of (}’d(G). The theorem
can be narrowed: each )( G) is contained in some finite symmetrized power
of A,(G). Let now Hy = ker A”“(G), so that Hy is normal in G, and let &€, =
- G/Hd‘ be the corresponding factor group. As an irep of ;Cd‘the’.lt_/']’d(G) -
)(ul(}(a) is faithful and hence it generates all ireps A}B(an) each of which en-
genders an irep /‘\"K(G—). In the language of spaces it means, that the ’Yd(G)"
module L, generates the whole stability space Ll(Hﬂ) in the sense, that
among tensor spaces (or even spaces of symmelrized tensors) on the space
Ly we shall find A’K(G)-—modules for each irep A‘E(G) for which L, is a part
of Ll(H ). In the language of polynomials we arrive to a conclusion that the-—

re ex.ista\polynom.ia.l G(G)wccvariants p(K - (pnl, P PURTIUNS Pra ), in com-
ponents of vectors x € L, to each irep F.S(G) engendered of the irep ‘; (5{4)
Finally, in the language of 'faint interactions' of the phase transition theory,
where vectors of Ld. play the role of the transition parameter, it means that

there exists the faint interaction for all variables ij which can

i TyiPsi
onset at the symmetry descent from G to Hy — the xb'j are just the compo-
nents of vectors from the stability space of H .

If H<JG is not a kernel of an irep, then it is a kernel of some compo-
sed representation and at the same time the intersection of kernels of ireps
which enter this representation. The situation is quite analogous to the pre-
vious case, instead of the minimal )(JA(G)—-module we have, however, to start
with a direct sum of minimal G-modules.

Let us now consider the meaning of the union of stability spaces in ca-
se of normal subgroups. If F = ker a/a((}) and K = ker ,;Yb(G), then FNK =
= ker (A’a((})@;\)b((})). According to representation generating theorem,
the corresponding spaces L, L generate the stability spaces Ll(F), L:L(K)'
and the direct sum La@ L, generates the stability space Ll(FﬂK) which is
just the union Ll(P) V] Ll(K). It is therefore not necessary to use the direct
sum of the full spaces Ll(F) and Ll(K) to generate the union; it suffices to

use only the direct sum of their generating spaces.
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7. Epikernels and generation of stability spaces for any subsgroup.

Epikernel B of an irep ;)(“(G) is defined as a stabilizer of a vector x from

the )(o\((})—module I"ok' We can analogously define epikernels of composed rep—
resentations, but here we shall use the term only for ireps. Every irep has al
least two trivial epikernels — the whole group (z, which is lhe stabilizer of null
vector, and the koernel Tl o= ker de( G—). The nontrivial epikernels appear in

sets of conjugate groups Fl and the group Hy = O Fi = core F is the kerncl
of the same irep AJA(G)' The stability space Li(F) is the subspace of L;L(Ho()
and the spaces L

L ¥
ents 5,6(]:‘) are the same for all conjugate epikernels and the subduction coef-

(F) are subspaces of szl(Hd\). The subduction coeflici—

ficient 50{(}7‘) is smaller than da\. There is a simple criterion (an analogue to
the ’chain subduction criterion’ 11), which enables us to determine from sub-—
duction cocfficients, whether a group [ is an epikernel of %(G):

Criterion: A group EF is an epikernel of /E\(G) if and only if lhe rela—
tion So({K) <= s, (F) holds for every group K which contains F.

For a given epikernel of A;(G), we can choose such form of matrix

ireps and hence such bases of A’X(G)—-modules L_, that just the first SK(F)

3
vectors form the basis of L (F). Let us have a polynomial rf(G)—-covari—

¥l
ant p(?f) = (pﬁl’ pb’2' weens 3 pb,SX(F), avser ¥ pde) and let the v?ctor X run
the space L,. We know, that the” polynomial r{\,((})~covariant5 pY ) i x exist
for all ireps A’B(C}), for which the }[‘E(G)—modules belong to stability space of
Hd\' Now, the first SB(F) components of such covariant are invariants of the

group F, while the remaining are not. I the region, in which x wvaries, is rest-

ricted to the stability space Ldl(F)’ then the polynomials pﬁ'.i, which were ori—

ginally polynomials in Xo(i’ 3 oom TP 5 el iurn into polynomials of the first

:
s, (F) variables X,; Onlys Since each of t:ese variables itself is invariant
under F, the polynomials must also be invariant under F, Hence the polyno-
mials Py je for which j = sE(F‘)-*-l, wee s dy, must vanish on Lou_(F). This re—
sult could be interpreted as generation of the stability space Ll(F) by Lﬁl(lw‘),
if we ascertain that the polynomials pl“., Jo= 142, seanee s SE(F) do not vanish,
Actually, some of these polynomials may also vanish for a given covariant
p(‘é). An inspection of extended integrity bases, which have been so far cal-
culated, shows, that there always exist such covariants, for which these poly-
nomials do not vanish., A question about the general validity of this conclusion
has been raised in connection with the problem of 'faint interactions’ 6, This
problem is of rather principal character in phase transition theory, W'}l]ere X
represent the transition parameter and xm. the other onsetting variables —
faint variables (for example the components of polarization in 'improper ferro-
electric transitions’ 12). Let us oulline the proof of the positive answer:

The group F acts trivially on the whole Ll(F)' The normalizer NG(F)
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of the group F in G leaves the space Ll(F) invariant, i.e. Ll(F) is a NG(F‘)—
module. In fact, this normalizer is the greatest group which sends the vec—
tors of Ll(F‘) again into Ll(E‘). The factor group NG(F‘)/F can be defined,
because F is normal in NG(F) and, since F is an epikernel of A’d\(G), this
factor group acts faithfully on Lotl(F)' Hence the polynomials in variables x i
i= 1,2, ..., Sd\(F) realize all representations of the factor group NG(F‘)/F.
On the other hand, the variables x It 1 = 152 sas SK(F), which correspond
to the whole stability space L1(F) also realize only representations of this
factor group.

Hence the space Ll(F) is generated by Ldl(F‘), if B is the epikernel
of /Yd.(F)- We can proceed in the same way as in the preceding section to
show, that the stability space Ll(K) of any group K is generated by the di-
rect sum of spaces Lo(l(K) which has the property that K is stabilizer of a
vector of this sum. And finally, we can show, that the meaning of the union
of two stability spaces is the projection of tensor product spaces formed by

generating spaces of the original stability spaces.

8. Exomorphism and stability’ spaces.

Let us now consider t\ﬁo exomorphic symmetry descents G{F and alﬁ. Since
the factor groups H i ¥ are isomorphic, we can choose the same labelling
for their ireps and the same complete set of linear spaces Lo(, which are at
the same time Aﬁ(a{)— and f}i(g_{. )—-modu.les. The direct sum of these spaces:
LD(}() = LO(R) can be interpreted as well as the stability space Ll(H) as
the stability space Ll(ﬁ). In view of the choice of the isomorphism G, the
groups H ana K act in precisely the same way on L:I.(H) and, since the iso-—
morphism maps T = F/H onto ¥ = FJi, the groups F, F act also in precisely
the same way on Ll(H)' Generally, there is a one=to-one correspo_ndence
between groups of the lattices & (Gf1), L(G/A), L (K), ana ¥ (¥ ) such,
that groups corresponding to each other have the same stability spaces, are
either together epikernels of the same ireps or intersections of the same epi-
kernels etc, It can be shown, that the exomorphic symmetry descents are also
quite equivalent as concerns the mathematical fealures of corresponding phase
transitions - particularly, they lead to the same structure of orbits (domaihs)
and, up to the choice of instability, to the same form of thermodynamic poten-—
tial.

Finally we shall consider the case, when the subgroup F is an epiker—
nel of irep XA(G)- The corresponding group(}' is then an epikernel of ,\/A(Kc().
The irep A’d(lﬂd‘) is a faithful irep of 3{*01", in other words, a matrix group.
This mafrix group is the image Im [, (G) of the matrix irep [,{G). To con~

sider epikernels, it is therefore sulfficiert to study the irreducible mafrix



- 7 =

groups. All epikernels of such matrix group Im FO\( G-) = Im Y;(Rd\) will then
correspond lo epikerncis of ireps of any group G which is an extension of
any group Ho: by the factor group EKM, namely to those ireps which are en—
gendered of the irep ri(atd\)‘

9, Conclusion.

The typing of symmetry descents for crystal point groups as well as for the
magnetic poinl groups has alrcady been performed 5'9. This typing also na-
turally includes all group subgroup relations between space group for the
equitranslational case, As a first step in an analogous study of space groups
we have to consider the epikernels of their representations — in the first ins—
tance it means the determination of epikernels of images of their ireps. A prob-

lem which goes in hand with this determination is the calculation of fundamen-—

tal algebras for thesc ireps.

References:

1, J. Neubllser and H.Wondratschek, Krist. Tech. 1 (1966}, 529 and inter-
nal reports of 1969 and 1970.
L.L.Boyle and LE.Lawrenson, Acta Cryst, A28 (1972), 485 and 489,

2, C,Hermann, Z.Kristallogr. 69 (1929), 533,
3. S.McLane and G.Birkhoff: Algebra. MacMillan, New York, 1967.
4, E.Ascher, J.Phys.C: Solid St. Phys. 10 (1977), 1365,

5, V.Kopsky! Group lattices, subduction of bases and fine domain structu-
res for the magnelic point groups. Academia, Prague, to appear in 1981.

6. V.Kopsky, J.Phys.A: Math, Gen, 12 (1979), L291.
7. J,Hall, The Theory of Groups. MacMillane, New York, 1959, ch.8.

8, VuKopsky, Collected Abstracts, 1lth Congress of Crystallography,
Warszawa 1978, S 12,
9, V.Kopsky, Phys,Lett. 69A (1978), 82.

10. W.Burnside: Theory of Groups of Finite Order. Dover, New York, 1955,

11, LL,Birman, Phys.Rev.Lett. 17 (1966), 1216.
F.E.Goldrich and J,L,Birman, Phys.Rev, 167 (1968), 528,

12, V.Dvoiédk, Ferroelectrics 7 (1974), 1.



