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Abstract

The sum of the topological distances in the molecular
graph (the wiener index) is used in the analysis of molecular
branching and cyclicity in a large class of compounds, having
both a cyclic and an acyclic part, simultaneously. 9 topolo-
gical rules are proved which reflect the regular change in
the topological index upon certain structural changes in
groups of isomeric compounds.

iniroduction

1t is known uihat, T;;:;E;Z:;?: 01 ithe specific geometry
and tne individual properties of its atoms, lhe properties of
a molecule are basically determined by its topologyl_h. Mole-
cular topology depends on the adjacency o! atoms in the mole-
cule but not on the bond lengtins, valence angles, or area
encompassed by the cycles. Molecular branching and cyclicity,
the Hickel or anti-Huckel cnaracter of the 1 electiron circu-
its in the conjugated cyclic systemsi, the number and parity
of the Kekule structuresj'°’7,etc., could be mentioned among
the most important topological factors.

Although the hierarchy of the topological structural fac-
tors is still an open question, it is out of doubt that some
of these factors are determining for the specific molecular
properties of many classes of compounds. The basic properties
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of acyclic molecules for instance are determined by their
hrancnings, this topological factor has been studied in detail
for the last 15 yearsgnlﬁ. itecently, the wolecular cyclicity
was also quantvitatively defined, iis alternation upon certain
structural changes being examined in a series of papers on
monocyclicls, and polycyclic condensedlb, spiro-17, and brid-
Eedla isomeriec structures.

A graph-theoretical approach is used in the above studies
which is based on the examining of the changes in a quantita-
tive criterion (a topological index}19'20, reflecting the es-
sential topological teatures of molecular graphs. The main
point ot the approach is in tne deduction of equations tor
the intluence thal certain structural factors nave on tLhe
benaviour of tne topological index within groups ol isomers.
Topological rules of molecular branching and cycticity, ref-

lecied in various molecular properties®l”%2

are specitied by
these equations.

The topological distance matrix D(G) is distinguished,
among the many characteristics ol wolecular graph (G), as a
good basis Tor structural studieszq. this is a real N x N
symmetrical watrix (N is the number of vertices in G). Ius
oft-diagonal entiries DiJ(G) are equal to the numver of bonds
along the shoriest path between vertices i and j in G, while
the diagonal elements are by definition zero. Studying some
additive properties of acyclic nydrocarbons Hiener25 tirst
used the distance number of a graph W (the Wiener number)
which bhe deIined as the number oI bonds between each pair ot
carbon atoms. 1t can be shown thal ine wiener index W(G) ot

grapn G is balt ine sum of all distance matrix entries:
1
w(G) = 4 %u“(ﬁ) (1)

In tnis way tine wiener number represent the sum of all
topological distances in the graph. this topological index
demonstirates a high discrimination abiliiy towards isomeric
structures and proved to be fruitful as a measure (reverse
proportional) of molecular branoningu'lh and cycl1cibyls—18.
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The studies on molecular branching and cyclicity cited
above deal with acyclic molecules and cyclic molecules witn-
ouv branches, respectively, i.e. the two topological factors
are investigated in a "pure torm", The present paper aims at
studying the simulvaneous change of the branching and cyclici-
ty in tne general case of cyclic structures lhaving acyclic
branciies, since Tie Lwu iaclors cannoi we aiways demarcated,
the guantitative study of this vast class of molecular struc-
iures by means of tne Wiener index rather characterizes the
overall structiural complexity within it

The problem may be illustrated by the following examples:

L= L =L L =L L L)

W = BBY W2= 753 W — 025 qu 569
g L == OF e T = TP
W = 195 HZ= 200 W 3= 203 k= 207

One could expect thaiv vhe inecrease in cyclicity and the
decrease in branching along the tirst sequence of compounds,
will reduce ithe sum of the topological distances. This is more
difticult, however, to be intuivively done Ior the second se-
ries of compounds, as well as for the most branched cyclic
chemical structures in Nature., Hence, the necessity of a rigo-
rous mathematical treawment of tue change in the wiener index
on certain structural changes in isowmeric groups of compounds.
The topoiogical rules deduced on this basis could be of prac-
tical importance. The ordering of the isomeric structures
according to vhe topological index, reflecting tuae degree of
the structural cnange in the corresponding isomeric series
could in principle be extended on majority oi molecular pro-
periies., In additvion, tne topologicai rules could be used as
a convenient ovasis for quantitative structure-property corre-
lations, specifying the optimal sample of isomeric molecules

to be included in a certain correlation.
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Structural factors influencini the cyclicity and bran=-
ching of the cyclic molecules with acyclic branches

The total topological distance in the molecule reflects
simultaneously the two topological factors - molecular cycli-
city and branching. Since it decreases with the increase in
both factors®r1%°18 ,ne ghould speak in such cases about an
increase in the totality of branching and cyclicity. Moreover,
it might occur that cyclicity and branching change in opposite
directions, as well as the increase in the first of these to-
pological characteristics of molecules to be compensated by
the decrease in the second one, Due to the difficulties in
demarcating these iwo molecular features we assume that in
this study the wiener number reflects the totality of cyclici-
ty and branching, i.e. the overall complexity of molecules,

the structural factors that were taken into account in the
characterization of cyclicity and branching of the molecules
under study, as well as their denotations are listed below.

N the total number of atoms in the molecule. In this

’

° paper N0= const, i.e, isomeric structures are under

consideration only;

a , the number of cycles (all cycles are of Lhe same kind
of connection - a condensation, or spiro-, or bridged
one);

N , the number of atoms in a cycle {all cycles are of the
same size);

Nk' the total number of atoms in the acyclic part of the
initial structure;

Nkj,the length (in number of atoms) of the j-ih side
chain of the initial structure;

i , the number of the newly-formed side chains to the
cyclic part of tie structure;

Ni' the length (in number of atoms) of the newly-formed
side chains to the cyclic part ot the structure;

dij,tne sistance (in number of bonds) between the side

chains i and j along the cycle;

al = Nk" - Nkj", the difference in the lenglbs of two
J



side chains;
p , tbhe number of the newly-formed branches to the
single initial side chain;
N the length (in number of atoms) of a newly-formed
branch to the initial side chain;
ANP, the distance (in number of atoms) between the cycle
and the branch of the initial side chain,

The influence of the above mentioned factors is studied
and reflected in the equations, derived in an inductive way
for the wiener number. The results are formulaled in rules
expressing the nature oi molecular cyclicity and branching in
the studied wmolecular siructures,

The number of atoms in the acyclic part and the size

cl the cycle

Rule 1, The sum of the topological distances in isowmeric
structures composed of a cycle and a non-branched side chain

passes through a minimum defined by the condition:

2
N = (N, - 4 -2 - N e 7/3) /5 (2)

with the increase in the chain length at the cost ol a decrea-
se in the cycle size at a constant parity of the cycle membe-

ring:

> aae > W

X = N-n,N, +n = WN-n—l,Nk+n+l<:...

W
N,N, N-l,Nkfl

2)
rer < Wy_nog,N,enss (

where n and s are positive integers.

Examples: N0 = 14 = const

® — F— &~ —

N:l‘i,Nx=0 N:lZ,Nk=2 N=10,Nk"-"'i N=8,Nk=6
" - W =30 =7 =30
W1-34) H2-325 wj 335 W“ 363



Nmf),Nk-_—B N:’Q,Nk=10

W5=399 W =433

In these and the following examples the number of atows in
the acyclic chains is directly assigned by a number above each
chain,

Ruie 1 is proved deriving by induction the eguation for
the Wiener number of a monocyclic system with a single non-
branched side chain:

W o= [’5’“2 + ENﬁ(jNo--'-&) - Nh\zng-wyom) + 3N2 +

+ A(N0+Nk/3):l / 24 (3)
where N = (N +X) 2> 5; K = const; N = 1,2,3,...,0; Nk#const.
=0 and A = -3 for even- and odd-membered cycles, respecti-

vely.

The second part of the proof is presented below for the
case of even-membered rings (it does not essentially differ
for odd-membered cycles).

L}
The function W in eqn.(3) has a minimum N and a maximum
T

N , respectively, at:
w 1
N =[(3N0-4+2\ﬁ7)]/ 5 (3
where D = Nﬁ = [N 7/3.
By condition Nk =N, - N, and N > 4, We shall prove that

no maximum of W can occur in the structures under considerati-
L}
on, i,e, -
’ Nk > N, 4, or

(3, - & +2/D) /5 >N, -4 5

. Y
Substituting D from {3 ) into (3") one obtains
LI
N> 37/9 (3 )
whicn always holds since for even-membered cycles N 2

= b by
condition. Rule 1 is thus proved, The prool can also be exten-

ded for the case of a variable cycle-membering.



The number ol atoms in the acyclic part of the molecule

and the numver of cycles

nule 2, The sum of i1he topoiogical distances in isomeric
siructures, composed of a linear siring of cata-condensed, or
spiro-, or bridged linked (with one bridge withoui atoms in
it) cycles and a non-branched side-chain with a lengthn Nk
multiple to the number ot newly-formed cycles 2y attached at
one and the same position of a terminal ring,decreases when
the length of the side chain reduces at the cost of the torma-
tion or new cycles;

for Ny=a, (N-m) wa'Nk % wa+X,Nk—n (4).

Here x = 1,2,3,..., and n=(N-m)x, where m=2,1, and O for

condensed, spiro-, and bridged linked cycles, respectively.

Examples-
a=1, _12 k'S a=3, Nk_k a=4, Nk-O
H1=889 v2=753 w3= b25 wh=569

1n proving tnis rule we deal with AW = Wlwﬁz, i.e, ithe dit-

ference in the wiener index W, of the initial structure con-

1
taining only one cycle and a non-pranched side cuain, and the

Wiener index W, of the timal structure containing only cycles

2
{condensed, spiro-, or bridged linked). We omit the proot Ior
odd N which is analogical to tnat given below for even-membe-
red rings,

ror condenzed cycles:

- {kai(N-a)j + 12a¥n(N-2)% 4 2a, (3N7-14y +4) + 3m3} /24 {5)

W 2_24N+16) 4

2 = [2ai(N-2)3 & Gai(N-Z)E(N+1) n ak(7n3-bm
+38° ] /24 (6)

AW = W =W, = a (K- -2) (N-2) (2a +ba -1) + ba (N- 2) + 8 /24:>?7)



For spirosysteums:

oW = W Wy, = aK(N-2J[2a§(N-1)2 + 6a N(N-1) - (N2-ou+2)]/2«:>o
(8)

For bridged systems:
4 = W)W, = a,N(N-2) [N(2a2+6a,-1) + 2] / 28>0 (9)
Rule 2 follows from inequalities (7),(8), and (9).

he lengin of ihe side chaim in tne initial structure and
the number ol ine newly-formed brancnes 1o ilhe cycle

Rwle 3, The sum of vne topological disiances decreases
wien isowmers are subsequently formed Irom a sitrucuiure, compo-
sed oI a cycle having up to 10 atoms and & non-branched side
ciain, by tne suortening ol ihe side chain at the cost ol tne
formation o1 i new, non-oranched side cuaains ot egual lengun

Ni to. nali the atoms of cvne ring by tne condition the length
ot wue initial side cuhain Nk divided by tne maximum number of

new brancuesincreased by one, 10 be an integer egual Lo the
lengeh 01 tue newly-formed side cnains:

£ = N, ¢ W > W
or Ny/ipaxtl i My qed Ny XNy 1ex (10)

wnere X = 1,2,3,.+., and 1 = 1 + N/2.

wxamples: Nk =4
Nkl=‘i,1=U Nk1=5,1=l NK1=Z| i=2 Nkl=1'i=3
W =133 W2=131 H3=Jl} 'h=109

The prool of tue rule is presenied below lor two cases of
sitructiures with even-membered cycles (the simiiar proor tor
tue case of odd-membered cycles is omitted 1or breviuvy).

A) The new side chains are consecutively formed to neigh-
pouring aitoms of the cycle proceeding Irom ine initial side
cuain and moving only in one airection (clockwise or counter-
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clockwise),

The following equavion is deduced for the Wiener index ot
the examined type of siructures:

Ve 1n§{h12(znk-u-z) + 31(N+2)(3N-2N -2) - (6N° + oN? -
-16N - 6NN - 4N, - 20)] # }(N¢2)3 + W {(11)
W= [4 uz « 1NEN 4 on (3N 4 by - 2) 4 3n3]/ 24 {ii ¥

The speciiic cases ot eqn, (ll) for ~ = 4, 6, 8, and 10,
respectively are:

for N=4, i=1,2:

-1 I
k[ﬁi (N=3) = 9i(N-5) «+ (7nk-111;]/162 ‘W (12)

W= iN
| ] [»
W'a (N« 12NF 4 35N, + 48) / 6 (12")
tor N=6, i=1,2,3:
2
Vo= iNZ [12(nk-t.) - 61(N,-8) + (SNk-IBS)] /192 + W (13)
W= (8] + 1882 4 70N, 4+ 162) / 6 (13")
for N=8, 1=1,2,3,4:
2 2 i | 1
W= g [20%(N-5) - 153(N-11) + (13N,-875)]/750 + W' (14)
W= (N 4+ 2482 4 109N, 4 384) / 6 (1s")
for N=10, 1=1,2,3,4,5:
W= ang [12(Nk-b) - 93(N -14) + S(Nk-IGS)] / 648 + W' (15)
W= (Ni + 30NZ 4+ 179N, + 750) / 6 (15")

The structures with a six-membered ring are analysed below
the analysis of the other cases being guite similar, The Wie-
ner index, defined by egn, (13) has a minimum and a maximum,
respectively, at

11,5 = 6(N-8) ¥ 1D/ 3(Ny-4) (13"



where D = 3(7N§ + loN  + 16).

It will be proved that the function is limited within the
range from ii to i,. Hy condition i =1, 2, 5 for N = 6. Hence
we should prove t?at 11¢; 1 and 12 > 3. Substituting il < 4
and 122> 3 in (13 ) one obtains (Nk-k)(Nk+26);3 0 and
{Nk-h)(Nk+2) > 0, respectively. Both the inequalities and equ-
alities are true since Ny > 4, The case Nk:ﬁ is also taken
under consideration since the Wiener index (13) is defined at
this value, irrespective of the uncertainty that appears in
its first derivative (13"), (see also the example above).

B) The newly-lormed side chains are maximally distant

from the main side chain

rhe proof presented below decals with the specific case
when three structures are compared: an initial structure ha-
ving a cycle and a non-branched side chain of lengtlh Nk, where
NK is a muliiple of 3, and two other stiructures in which the
initial side chain is shortened at the cost of the formation
of one, and respectively two new branches with a length Nk/B,
the new side chains being maximally distant from tne initial
one, 1he Wiener indices of these three types of structures is

denoted by Wl, W2, and ”3’ respectively.

Examgles;
o - Ot
Nyy=6, 1=0 Nyo=4, i=1 Ny g=2, i=2
W= 242 W= 226 Wy= 198
Wy o= (128) + 36NZN + W) / 72 (16)
Wy = [lzuz + BNZ(TNek) 4 w'] / 72 (17)
Wy = [zsnnf; + BNZ(5N+6) + w'] / 12 (18)

E
I

2 3 .
= 6N (3N 4 6N - 2) + W + A(N + 2Nk) (187)



where A=0, and A=-9, for even- and odd-membered cycles, res-
pectively.

The proot of Hule 3 for this case follows from the inequa-
lities:

Wy =W - W, = Ni(N—z) /9>0 (19)
My = W, - W, = Nﬁ{ﬁk + }(N-l}} / 27 >0 (20)

The difference in the length of two side chains

Rule 4, The sum of the topological distances increases when
in a structure composed ol a cycle and two non-branched side
chains the longer chain lengthens at the cost ol a shoriening
01 the shorter chain at a tixed distance beivween tunem, and u
cuustant cycle size:

LR SN (21)

< W
N, ,* N, ' Nigj'+ LNy

kj , k] kj

where Ny .' 2 Nyy'' and a1 = 1,2,3,..., N=const, d=comst.

Examples: d12 = 1 = const

of —Ck -t —OF —

Al=Q A= aAl=4 41=6

¥ =745 w,=749 W3=7b1 w,=781

Rt P

AM=8 £1=10 al=12
'= = =
5 809 W6 B45 w7 889

The equation deduced for ine wiener index ot structures
composed of constant cycle and two non-branched side chains
with a variable lengih, tue chains veing distant irom each
oLner by a constant number ol d bonds along ine cycle, is:

Wa (N-d-2)(a1)2 /&8 4+ W' (22)
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1

W - [&NE + 6NZ(N+d+1) + 2N, (38%6N-2) + 380 4

+ A(N+2Nk)] / 24 (22)
llere A=0,and d=1 + N/2 for siructures wiin even- membe-
red cycles, and a=-3, and d=i + (N-1)/2 for structures witin
odd-mempered cycles,

Since N > d+1, it is evident from egn. (22) that the
increase in the difference ol ihe lengihs ol ine two side
cnains, Al, increases uhne sum oI Lhe Lopological distances W
irrespective o1 wne disitance d bpeitween the wwo side chains,
#ule 4 is cvnus proved.

Hule 4 could be exiended Lo cycles naving more taaun Lwo
side chains.

The distance beivween lne side cunains along uvne cycle

Rule 5. Im isomeric siruciures, composed of a cycle and
non-prancned side chains, tne sum ol ine topological disiances
W increases with the increase in ihe distiances belween tlhe
atoms to which the side chains are connected. 1f the sum of
tnese distances is constant, W increases with the increase in
the distances between the longest side chains or , if these
distances are also constant the latter is true when the remai-
ning side chains become more distant Irom the longest ones:

W J
hkl'”kz’”k}""'d12'd13""’d23"“

W, ' ;
NppoNgorNygreeend ordyayene,dyasees (23)

[’
“

] 1 1]
wnere d;, > dl2 or (and) d13i> dl3 or (and) d23:> d23 , etc.
Examples:
#1=238 W2=243 H3=249
d),=dys=l,dyo=2 4y =1,d,022,d) 053 4),=dy0=2,d) =3



W,=252

d12=3,d =2

237%13

We present below a part of the proot of this rule for
the case of systems composed ot a cycle and three non-vranched
side chains wiin a ditterent length. The Wiener index Ior such
isomeriec siructures is;

- , ' ‘
Wl NNy + N Ny + Ny Nyg + W (21)
1 F) 3
w=0 2 Ny AN, +N, N 125
= J STy KJ( Kyttt )+ JJ'J,=1HKJNKJ' +
FESRESEN BENR (4t )

} 2 E
+ N0 4+ 2038% 4 BN - )TN, 4 4TN s A(Mzuii,s;

wuere A=0, diz 1 2 N/2 1lor even-mempered Cycies, and A=-3,

d=13s (N- B =
= s (X 1)/2 tor ouu-memperea Cycies;> N o= N o+ N, 4+

+ Nkj‘ W depenus ilneariy oun niJ'u and increases when any ol
bilem lncCredSes ay Consians N and Nkl’ which proves wue ruile.

the size of ithe cycle aua the number o1 side chains

Rule 6, Comsider a consecullve conversion of a wonocCycCle
naviug N atoms into 1someric seructures 1n which ilhe cycle,
preserving 1ts parity, decreases Lo N atoms al the cost oI the
tormation of 1,2,3,...,1 neighbouring, uon-brauched side chains
with the same length N , i not exceeding (N+2)/2 or (N+l)/2
tor even- and odd-membered cycles, respectively. lu the sequ-
ence ol iSywers Lous iormed the suw of the topological distan-
ces,

a) passes through a minlmum;

w > > W <

N, »2 saa & 29
1t Nypl, “eee HN}'lj L23)
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specified by the condition:

NN, + 2 VD N

o

_— Ligy = L=— (26)
3“1(3}!1 + &) 2

b) steadily decreases:
W > W > W 27
Wyyly L Nypig (27)

when an inequality opposite to (26) occurs;
c) passes through a maximum:

W <awo <W > L.l W (28)
Np»dy Ny, i, N3, ig
specified by the condition;:
2N, + 4 SN < Ny +2 + 2N, B (29)
where N, > 6, and B = (3N1+10+l‘4/§i) / 3(3N1+4);
d) increases:
W < W < W, (30)
Ny»i No» i, N3, iz

when Ni=2 and Nu < 8,

The following conditions also holds for Rule 6:

Ni=zk; N =N+iN i<(N+2)/2 for N=2k, i < (N+l)/2 for

N=2k+1; Nl>"'>N2>"'>N3’ and hence 11<...<12<..
v <13.
Examples:
Nk=‘!, No=13—
11 = 0.44 12 I 1,06
N=12,1i=0 N=8,i=1 N=4,i=2

'h'l=216 W2=183 W3=236



Ny=2, N =18

® — & — GF

N=18,1=0 N=16,1i=1 N=14,i=2
W,=729 W2=689 H3=641
N=12,1i=3 N=10, i=4 N=8,1i=5
H“=595 H5=561 We=549
N =2,N =7
N=7,1=0 N=5, i=1 N=3,i=2
W1=1|2 h’2=&} H3=‘l7

The proof of Ruie & is based on the analysis of the
equation for the Wiener index of the isomeric compounds des-
cribed above:

! v 27 o 2.2 i ,2_. )
W= [1jh1\3N1+h) 31889 - AN (BNI-128 N+ 16N, +

2 3
+ 3No-l2ﬂo+&) +}No + A(No+1N1)J / 24 (31)
where A=0, and A=-3, for structures with even- and odd-membe-
red rings, respectively.

At No- even, W has a maximum 11 and a minimuam 12, respec-
tively:

1) = (3NN, ¥ 2\/D) / 3N (3N +4) (32)

where D = 3N1[6N3-N§(9N0-20) + N (3N -21N_+19) + 3(N0-2)2].

The conditions, specified by No, Ni' and i, at which W
has not an acceplable maximum, i.e. 11<:0, can be found from
the inequality 2VB:>3N1NO. we shall examine however a stron-



- 160 =

ger condition, reqguiring 11 > 1. This condition excludes the
possibility of lhe maximum appearing near i=C (the first
example above) since the existence of the maximum regyuires
4t least one isomeric structure corresponding to a point on

the left to it. Proceeding from these assumptions one arrives
at the expressions:

(N +h) - 6N (3K +4) (Ny+2) + (-3ND48N4z8N 448) <0 (33)
No(1,2) = Ny *+ 2% 2Ny VB (34)

where B = (3N1+10+1fu'N1) / 3(3Ni+‘i) < 1, at each N, > 2.

From (34) the condition for the appearance of an accepta-
ble maximum of W is

Ncgno{2)=ni+2+2}zi\j§ <3Ny + 2 (35)

l.eft constraints for ND also exist as a conseyuence of
its partition into a cycle with N atoms and i side chains each
one having Niatoms: No =N + iNi. Taking “min
membered cycles and 1 = 3 (three different isomers are needed

= 4 for even-

for a maximum to be found) we arrive to the condition
N032 3Ny o+ 4 which contradicts (35). Therefore, & maximum of
the Wiener index never occurs in a seguence of three isomers
naving side chains. Still, it could occur in amother sequence
in which the first isomer is & monocycle, and only the second
and the third one have side chains. The range ol NU within
which the acceptable maximum of W can appear is

2N

1+kgﬁogwi+2+2xiﬁ (36)

It follows from (36) that an scceptable maximum of the
wWwiener index is impossible for Ni = 2 and Ni = 4, but it can
occur for Ni > 6, The narrow range of ND values specitfied by
(36}, however:

N : 1
Ny 6 8 0

No 16-16. 14 20-20. 44 24-24,74

widdens the non-integer maximum between two integer values of
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No and it will actually appear at very large side chains,
When Ni=2 or N1=4 the Wiener index could have an increasing
trend, Condition (36) however narrows the range of No values
at which this cun happen to N, = 2, N

i o
The minimum of the Wiemer index is easily obtained as can

< 8, only.

be seen from the first example above. The condition for the
appearance of an acceptable minimum follows from (32), and
the initial assumption i < (N+2)/2 for N=2k:
,Efifs_i;iijﬁi_ B AL = 1 = _:i, (37)
3N, (3N, + 4) . .
When the opposite inequality occurs the W function will
regularly decrease, being within the range from H(i:il) to

w( i=1,).

The distance between the cycle and the branch
to the initial side chain

Rule7. In isomeric structures composed of a cycle and a
side chain with argg:nch of arbitrary length, the displace-
ment of the branch the end of the side chain to the cycle
diminishes the sum of the topological distances W, except the
cases where the side chain has at least three atoms more than

the cycle,in which a minimum of W occurs:

W 5 ki 38)
2) VNl 7 NN, aNy L RN (
where aﬁﬂ Z>AN£' )’aNL"Z) Gdse '3
>W e T g .
b) HN,Nk,ANI') NNy, aN ! NNy, oN
<W t (39)
N,Nk,ANp

.8 t
where ANL > ANB' = ...>’Ahp:>...:’ﬂﬂp , and

AN; = (N, -Ns1) /2 (40)
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N =6 = =
A P ANp 5 ANP 4
W, =388 W2=379 W5=372
ANP=3 AN'.p= ANp=1
w4=367 w5=36q w6=363

The following eyuation was obtained for the sum of the
topological distances in the isomeric structures obeying
Rule 7:

W o= AN X o -1 W 4
sNy hp(aND Ngy + N ) + (40)

L 3 2 J 2 ¥ 2 =y
LANERE S 12Nkl(Np+N) + 2Lk1(6Hp+1sz+3N +6N-2) »

; N g 2 ot 3 . 2
+ 2Np(2Np+prN+3N +6N-2) + 3N + A(N+4Np+12ﬂk1) (41)
where A=0, and A=-3, for even- and odd-membered cycles, respec-

tively.
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The proof of rule 7 follows from the analysis of eqn. (40)
showing that W has a minimum at

AN, = (N, - +1) /2 (42)

The length of the initial side chain and the length
of the newly-formed branches to it

Rule 8, The sum of the topological distances diminishes
when in isomeric structures, containing a cycle, a side chain
and a branch to an arbitrary atom of the latter, the side
chain shortens at the cost of the increase in the branch
length without any displacement of the branch:

W > W > W - (43)
NyraN Ny NysaNp Ny Ny ooN N s

where h’p <N <Np3<“‘
Example: Nk=10=const, ANP=1=const

O““MO“””O“““

N =1 N —2
P

W, =612 H2=56h W3=528

g~ s g

N
W,*=50‘I 5='i92
The following equation holds for the Wiener index of the
structures obeying the above rule:

W o= AND.NP(AN Nk+Hp+N 1) + W! (44)
W o= [«Nkuzximznk( N -12NpN+l2Np+6N-2) + 24Nﬁ(b1—l) "
+ 3N7 4 A(Ne2N -2N )]/ 24 (44)
where AN = 1 & (N -1); A=0, No= 0 = N, /2 for even-membered

cycles, and A:—}, ¥ =0 ¢ (N, -1)/2 for odd-membered cycles.
P
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From (44) it follows that W has a winimum waen the branch
length equals the side chain length;:

for Np - even: Np (Nk-ng)/2 (45)

for N, - odd:
o Np

" (N -a¥N)/2 - 1/8&NP+N—1) (46)

the second term in (46) being approximately equal to zero.

The length of the initial side chain and the number of
the newly-formed branches to it

Rule 9. The sum of the topological distances decreases
when in isomeric structures, containing a cycle and a side
chain (with or without branches), the latter shortens at the

cost of the formation to it of new branches with an equal
length:

w > W > W S e (47)
where Py < p2c< pj<i...
Examples:
[!1=0 p2=l p3=2 Pk=3
wl=399 w2=363 w3=331 w4=311

(See the proof of Rule 1.4 in ref.8).

ancludinﬁ Remarks

This work is a part of a laurge project for studies on
molecular branching and cyclicity®'1* 18, The latter are chu-
racterized by means of a quantitative measure (a topological
index) based on the topological distance matrix and mainly by
the sum of the topological distances in the molecular graph
(the Wiener index). In this series of studies we proceeded
from the ussumption that the nature of molecular branching

and cyclicity could be better understood, only if the contri-
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butions made in them by the major structural factors were
quantitatively examined. The number, size, and mutual dispo-
sition or itype of joining of the cycles, chains, and their
brunches were the important structural features taken into
account in the preceding studies, In this study we were inte-
rested mainly in the guestion whether any principal differen-
ce in the molecular branching and cyclicity exists when they
simultaneously occur in one and the same molecular structure,
On the other hand, the mutual influence of branching and cyc-
licity was also of interest. This is a rather complicated
question, indeed, and no siudy on it has the chance to be
complete. Thus, we had to restrict ourselves to a number of
typical cases.

The general conclusion possible from the results of this
work is that the branching in acyclic and cyclic molecules
has a similar behaviour. The similarity of rules 4 and 8 (the
decrease in the difference in length of the branches to a
cycle or to a side chain decreases the Wiener index), as well
as of rule 3 of this paper and rule 2.1 from ref,8 (the con-
version of a long branch into several shorter branches decre-
ases the Wiener number) supports this conclusion. The speci-
fic nature of the branching in the cyclic structures obeying
the above rules is mosi often expressed by the appearance of
a theoretical minimum of W bmt it cannot be reached in these
structures. Quite a similar result follows from the compari-
son between the conversion of a long chain in acyclic molecu-
les into branches (rule 1.4, ref.8), the analogical conversion
of & long side chain in cyclic molecules into branched side
chain (rule 9 of this work), In these two cases the above
mentioned molecular rearrangements are accompanied by a dec-
rease in the sum of the topological distamces w.

The influence of the cycle on branching seems sironger in
the case of a displacement of a branch from a terminal to an
inner position of the side chain (rule7), as compared with
the acyclic chain (rule 4.1 imn ref. 8) since a minimum in
the Wiener index appears in the first case, instead of a re-
gular decrease, The difference however is not so drastic



- 166 -

since in the acyclic chains the described displacement of a
branch actually has also a minimum in the centre of the chain,
The case of u side chain to a cycle is similar to the situa-
tion described above but the minimum point is displaced nearer
to the cycle.

Rule & (the conversion of a cycle into branches) is an
exXample of the mutual conversion of the cyclic and acyclic
parts of the molecule. One faces here a more complicate situ-
ation since depending on the size of the cycle and the number
and size of the branches, the Wiener index can steadily dec-
rease: or increase , or can pass through a minimum or a maxi-
mum, Rules 1 and 2, dealing with the conversion of a side
chain into a larger cycle, or into a larger number of cycles,
respectively, are also of this type. The systematic decrease
in the sum of the topological distances occuring in the struc-
tures that obey rule 2 is however rather an exception than a
general trend, since besides rule 6, rule 1 also predicts a
minimum of W. The mutual dependence of molecmlar cyclicity
and branching in these cases makes the topological properties
of the corresponding structures more complex. Due to this,
rules 1,2, and 6, express rather the overall structural com-
plexity of molecules than its components - cyclicity and
branching.

The graph-theoretical analysis of molecular branching and
cyclicity is not only of theoretical interest. Since most of
molecular properties are dependent on the structure (and main-
ly on the topology) the quantitative scale of branching and
cyclicity, specified for different classes of isomeric compo-
unds, might be transferred onto many properties of these com=-
pounds, This would help the chemists to order the isomeric
molecules (known, as well as non-synthesized ones) according
to their stability and reactivity, thermodynamic and spectral
properties, et,, by means of elementary calculations, The ap-
proach can also be applied in a quantitative way deriving cor-
relations between the sum of the topological distances and
various molecular properties. High cerrelations were for ins-
tance obtained with some thermodynumic data like heats of for-
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mation and combustion, boiling points, et.,22 us well as with
some gas chromatographic retention datazl. Such results are
of more general importance since the topological index of
Wiener used in the correlatiions, is shown to depend in a
quantitative way on the different structural features of
molecules, Thus, an insight could be provided for the speci-
fic contributions of these structural elements (the size and
numher of cycles, chains, and branches, their mutual disposi-
tion or their kind of connection, etc,) in molecular proper-
ties. Our approach differs from the classical additivity
schemes in the influence of the different structural elements
being simultaneously taken into account in a cowmon equation
instead of being partitioned into individual contributions.

A similar insight could be provided for the changes in soue
molecular characteristics upon the intramolecular rearrange-
ments obeying the topological rules, by makimg use of the
equations derived for the change in the sum of the topologi-
cal distances. Studies attemting to apply the above ideas to
various molecular properties are in progre332 .
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