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Abstract

Clar’s resonant sextet theory is extended to the class
of alternant non-benzenoid conjugated hydrocarbons. A num-
ber of combinatorial results have been proved, connecting
the number of Clar formulas with the number of Kekul& struc-

tures and the algebraic structure count.

Some time ago Clar developed the concept of resonant
sextet1 in order to rationalize the theory of the aromatic
benzenoid hydrocarbons and systematically explain their ba-
sic chemical and spectroscopic properties. Several authors2
pointed at the fact that Clar’s theory has a deeper physi-
cal meaning and that it can be justified by means of guantum
theory. Hosoya and Yamaguchi3 recently discovered interest-
ing combinatorial relations for the resonant sextet numbers
and introduced the sextet polynomial of a benzenoid system.
The theory of the sextet polynomial was thereafter further
elaborated4_8.

In the present paper we shall extend Clar’s formalism

from benzenoid tc arbitrary alternant hydrocarbons and pro-
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pose a generalization of the sextet polynomial. A raunaber
of combinatorial results will Le¢ derived, which will be
summarized in five thcorems,

In the following we shall consider alternant hysro-
carbons®*, The molecular yraph G of such a hydrocarbon is
composed of n rings - R1,R:,...,Hn. The size of the riny
Ry will be denoted by }Hi}. We shall assume that G contains
no vertex of degree one, that is every carbon atom of the
conjuyated molecule under consideration nhas at least two ad-
jacent carkon atoms.

For cxample, G.I is the molecular graph of an alternant

hydrocarbon with five rings - anu RS and in ad-

R.I ,JI’\Z,RB,.‘:{4

dition, |R11 = mqi = ]RS\ = 6, By Rt = Ey

e,
,..._‘.

9@9 - @ o8

(31 (31"F?2 CB]"(F%Z)

“ A conjugated molecule is said to be alternant if the size
of all its rings is even. If all rings are 6-membered,

then we have a benzenoid molecule.
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The subgraph G--Ri is obtained by deleting all the ver-
tices and edges of G which belong to the ring Ri‘ The sub-
graph G—(Ri) is obtained by deleting all the vertices and
edges of G which belong only to the ring Ry (but not to any
other ring). For example, 01-R2 and G1~(R2) are as given
above.

The number of Kekulé structures and the algebraic structu-
re count9 of G will be denoted by K(G) and ASC(G), respect-
ively.

The generalized Clar formulas for G will be defined in
full analogy to the Clar formulas for benzenoid systems1'3.
Thus if there is a Kekulé structure of G such that the ring
R, contains iRi{/2 double bonds, we say that R, is a reso-
nant ring. Conseguently, Ri is a resonant ring if and only
53 K(G—Ri) # 0.

Two rings Ri and Rj are mutually resonant if
K(G—Ri—Rj) # 0. By definition, two adjacent rings cannot
be mutually resonant. Triplets, guartets etc. of mutually
resonant rings are definced in the same manner.,

Resonant rings will be symbolized by circles. In order
to avoid any misunderstanding, we shall use a full circle
in the case of six-membered rings and a dashed circle in the
case of rings whose size is different than six., Further
details on Clar formulas are explained elsewhero3.

On Chart 1 are given the generalized Clar formulas of

Gy including ‘also the formula without resonant rings.
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chart 1

The generalized Clar formulas of G1 and the corres-

ponding resonant ring monomials
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Let the Clar formulas of G be C1’C2""’Cm' Let Xy
X.,,...,% be scalar variables. If the rings R_,R ,... are
2 n a’'""b

resonant in the Clar formula Ci' then we will associate a

resonant ring monomial E(Ci) = X X to this Clar formula.

bt

(The monomial Z(C) = 1 1is associated to the Clar formula C

without resonant rings.)
The resonant ring mcnomials of the Clar formulas of G1
are also given on Chart 1.

We introduce now a multilinear form p(G) in the follow-

ing manner.

DEFINITION
If C1,C2,‘.‘,Cm are the Clar formulas of an alternant conju-
gated hydrocarbon G and E(C1), E(CZ)""’ E(Cm) are the per-

tinent resonant ring monomials, then

i}
IR
m
(@]
-
.

p(G) = p(G; Xq XZ""'xn)

For example, o(G1) =1+ Xy ot x, ¥ Xyt xg tx + x

TRgRg v Eg¥e, b Ry b uge *EgRy T KRy F HyXades
It can be immediately verified that if G is a benzenoid
system and if we set Xy = Xy ==X 0= o then p{G) becomes
identical with the liosoya - Yamaguchi’s sextet polynomials.
THEOREMHM 1
For all rings Ri of G, such that at least one eage of Ri be-
longs only to Ri (but not to any other ring), the following

recurrence relation holds,

p(G) = plG-(R;)) + x; p(G-R,) . (1)
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Pr oo f. 7The Clar formulas of G can be divided into two
groups. In the first group are those Clar formulas which
do not contain Ri as a resonant ring. The sum of the cor-
responding resonant ring monomials is equal to p(Gu(Ri)).
In the second group are these Clar formulas in which
Ri is resonant. The corresponding resonant ring monomials
must therefore contain x; as a factor. Their sum is equal
to x, p(G—Ri) and eq. (1) follows. Q.E.D.
Note that if the ring Ri possesses no edge as required in
Theorem 1, then G—(Ri) =G and eq. (1) will not be satisfied.
Eg. (1) enables an easy recursive evaluation of p(G). For

exanple,

P(Gy) = p(G;~(R,)) + x, PG, -R,) =

(1 + x1)(1 +oxg + x4)(1 + xs) + x2(1 + x4) 3

A conjugated system is said to be cata—condensed1o if

no three rings of it have a common atom. For example, the

molecular graph G1 represents a cata-condensed hydrocarbon.
Tneorem 1 applies to all rings of cata-condensed mole-

cules.
T HE OREM 2

If G is cata-condensed, then for x, = x, =.,.= x_ =1,

p(G) = K(G) (2)
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Proof. Aring Ri of G will be called terminal if it
has only one neighbouring ring. A cata-condensed molecule
has at least two terminal rings.

Let Ry be a terminal ring of a cata-condensed system G.

For convenience we will present R -as an §-membered ring.

b

G

Let KS{G) be the number of Kekulé structures of G in which

b is a single bond, and let Kd(G) be the number of Kekulé
structures of G in which b is a double bond. Then evidently,
K(G) = KS(G) + Kd(G).

Now, KS(G) = K(G—(Rn)) and Kd(G) = K(G - Rn), that is
K(G) = K(G-(R)) + K(G-R_ ) . (3)

We can now prove Theorem 2 by induction. If G2 possesses a

single ring R then

1'

ga?; x) =1+ xq, p(c®; 1) = 2 = k(@G .

Thus Theorem 2 holds for monocyclic systems.
Assume that Thecorem 2 is true for cata-condensed mole-

cules with fewer than n rings. Let G be a cata-condensed



molecule with n rings and let Rn be its terminal ring. Then

by eqg. (1}
elGn: N less eal) & p(Gv(R“); T lops sap 1) # p(G—R“; M Tomins 2l

Since by the induction hypothesis D(G”(Rn); Vi Toppes e} =
= K(G-(Rn)) anag p(G—Rn; ol g 5 10F 55 K(G-Rn), lTheorem 2

follows from eq. (3). 8

The special case of Theorem 2 for benzencid systems has
becn proved previouslyﬁ. Note that eg. (2) holds also for
the majority of peri-condensed alternant molecules. Violati-
ons of eq. (2) occur if the peri-condensed system possesses a
super ring. The concept of super ring was discussed in more

detail elsewhere3’8.

)

Y H BEOREM 3

For those rings R, for which Theorem 1 applies,

3p(G)
= p(G-R,) . (4)
%, &
i
Proof. Eg (4) follows immediately from eq. (1) and the

fact that neither D(G—(Ri)) nor D(G-Ri) depend on the vari-

Ll S IR DS
able hl QbR

COROLLARY 3.1

If for some 1,3,k,... we choose XN, = X. = X =.,.= X, then

2p(G)

: = pl(G-Ry) + Q(G“Rj) + p(G-R) + ...
oX
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In particular, if x, = x, =...= x_ = x, then we have

COROLLARY 3.2

Ip{G)

D(G—Ri)

I
[ e =]

IxX i=1

The Theorems 2 and 3 enable us to formulate the follow-

ing combinatorial result.

THECREM 4

If G is cata-condensed, then for Xg T Ky Te..= X 0= j
ap (G)
= K(G—Ri) s
I%
2

COROLLARY 4.1

I1f we set Ky = Ky =...0= X 0= A, then for x =1,
3p (G) n
= I K(G-R))
Ix i=1

The special case of Theorem 4 was observed for kenzenoid
molecules by Hosoya and YamaguchiB, but no proof has heen
offered until now.

Theorems 2 and 4 are more or less straightforward gene-

3'7. In the follow-

ralizations of previocusly known results
ing we shall derive a combinatorial identity between p(G)
and the algebraic structure count of G. 7Thus we shall de-

monstrate that by means of the resonant ring monomials we are



-137_

able not only to determine the number of Kekul& structures,
but also to obtain information about their parityg.

Let us consider a ring R of a cata-condensed alternant
hydrocarbon and let R be adjacent to the rings Ra,Rb,...
We will say that R is an A~ring, or that R is of type A if
its neighbouring rings Ra’Rb"" are all mutually resonant,
that is if K(G—Ra—Rb—...) # 0, If this is not the case,
we will say that R is an L-ring, or that R is of type L.

For example, all rings of G, are A-rings. The central

1

rings in 62 and 63 are of type L.

ooolo0y

(32 (53

Terminal rings are always of type A.
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THEOREM 5
If G is a cata-condensed alternant molecule, such that all

its rings of the size 4m are A-rings, then

p(G; s1,52,...,sn) = ASCI(G) , (5)
where

s = 1 if JRj| = 2(mod 4) (6a)
and

By o if [Rj| = O(mod 4) (6b)
for: - ® M@y sesea

Pr oo f. First note that if no ring of G is of the size
dm (i.e. all |Rji 2 2(mod 4)), then ASC(G) = K(G) and
Theorem 5 is true because of Theorem 2.

We proceed now to prove Theorem S5 by induction on the
number k of (4m)-membered rings in G. Thus Theorem 5 is
true for k = 0.

Let us assume the validity of Theorem 5 for systems with

less than k (4m) -membered rings. Let Ri be a (4m)-membered

ring of G. Then according to the induction hypothesis,

D(G""(Ri); 51.'521-.-) = ASC(G_(R:L)) (7a)

and

D(G-Ri; 51,52,...) = ASC(G-Ri) - (7b)
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Using an analogous argument as in the proof of Theorem

2 we deduce
ASC(G) = ASC(G—(Ri)) - ASC(G-R;) (8)

if R, is an A-ring. (If Ri is an L-ring, then no result

i
analogous to eq. (8) could be obtained.) Taking into account
the conditions (6) and in particular s; = -1, we obtain from

Theorem 1,
p(G) = p(G-(Ry)) = p(G-Ry)

which combined with egs. (7) and (8) is further transformed
inte (5). Q.E.D.
For example, ASC(G1) is obtained from p(GI) for Xy =%, =

g = i e m x3 = -1, namely
p(Gy: 1,-1,-1,1,1) = 2 = ASC(G,) .

It is worth noting that Theorem 5 holds irrespective of
whether the (4m+2)-membered rings of G are of the type A or L.

For the hydrocarbon G, (which does not fulfil the condi-

3
tions of Theorem 5) we have p(G3; x1,x2,x3,x4) =1 + x1 + Xy +
+ x3 + x4 + x3x4,
Therefore o(GJ; 1,~1,1,-1) = 0 whereas ASC(GB} =2, It

where |R | = ]R31 = 6, !R2] = 8 and [R,| = 4.

would be of considerable interest to generalize Theorem 5 so
to cover also the class of cata-condensed molecules with (4m) -

-membered rings of the type L. Such a result is, however,
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not known to the author of the present paper.
Since four-membered rings must always be A-rings, we

have the following consequence of Theorem 5.

COROLLARY 5.1
If G is a cata-condensed molecule composed of 4- and 6-mem-

bered rings, then eg. (5) holds.

Combining Theorems 2 and 5 we arrive to
COROLLARY 5.2

If G satisfies the conditions of Theorem 5, then

k' (G) Loker Auly —wen B BB Byudyis s sumed]

IR

=

K‘(G) [ptG: 1,1,...,1} - p(G; 51152'-."51’1)] r

where K+ and K are the number of even and odd Kekulé struc-

tures, respectivelyg, and the numbers sj are given by the egs. (6)
From Theorems 3 and 5 we have

COROLLARY 5.3

If G satisfies the conditions of Theorem 5, then for xj = s5.,

3= V2 baire il

3p (G)

= ASC(G-R.) .
98X . =
o

This is the last combinatorial identity which we present

in this paper.
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From the multilinear form p(G; XX ..,xn) a variety

21+
of polynomials can be derived by identifying certain variab-
les X, - We mention here a few of these possibilities which
might be of some importance in developing a general resonance
theoretical formalism for the description cof both benzenoid
and non-benzenoid conjugated hydrocarbons.

If a unique variable Ak is associated to all k-membered

resonant rings, that is if for j = 1,2,...,n

xy = A, whenever IRjj = k,

then we obtain from p(G; Kyrx .,xn) the resonant ring poly-

2R

nomialll R(G) = R(G: A,, M., Ags X sl

4* "g' "8’ "10'°
Some further specializations of this polynomial are

R, (6) = R (G; A7,2") = r(G: 27,2

It
It

R, (G) R2(G; A) R.(G; —-XA, A) ’

1 €

R, (G)

n
=

o (Gi A) = R (Gi A, X)

Note that if G is a benzenoid hydrocarbon, then R(G) and
therefore also R1(G), Rz(G) and R3(G) coincide with the sex-
tet polynomial.

The above listed polynomials have a number of interest-
ing algebraic properties. For instance, if G is a non-branched
cata-condensed alternant hydrocarbon (either benzenoid or non-

-benzenoid), then all the zeros of RB(G; A) are real numbers.
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The investigations of the algebraic and combinatorial
content of Clar”’s sextet theory of benzenoid molecules were
initiated by the work of Hosoya and Yamaguchi3. The present
paper offers extensions and generalizations of their results.
In particular we demonstrated that Clar’s theory can be ex-
tended also to non-benzenoid hydrocarbons and that the forma-
lism which we developed reflects the most essential resonan-
ce theoretical features of non-benzenoids, namely the fact
that their Kekulé structures may have different parity.

Therefore we hope that the multilinear form p(G) will

become the basis for a new mathematical technique in the

topological theory of conjugated molecules.
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