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On the classification and generation of two- and higher-dimensional regular patterns.

by Andreas W. M. Dress, Bielefeld

§ 0 Introduction

In this paper an n-dimensional regular pattern (M,D,G) consists of an n-di-
mensional manifold M , which is decomposed by a "polytopial" decomposition D into
a disjoint union of (O-dimensional) vertices, (l-dimensional) edges, (2-dimensional)
polygons, (3-dimensional) polyhedra and 4-, 5-..., k=,... up to n-dimensional "poly-
tops" (i.e. subsets, which together with their closure, consisting of lower dimen-
sional polytops, are homeomorphic to k-dimensional convex polytops in mn) together
with a group G of transformations of M which respects the decomposition D and
acts sharply transitive on the set of vertices of the polytopial decomposition D .
We assume each polytop to be uniquely determined by the set of vertices, contained in

its closure.

Thus the only l|-dimensional regular patterns are (up to isomorphism) the real
line R with its "matural" decomposition with Z <R as the set of vertices (and
the open intervalls (k,k+1) as edges, k € Z) and either the additive group % as
group G of "translational" transformations or the infinite dihedral group, gene-
rated by the reflections at the poiats k% , k €% as group G of transformations,
as well as the quotientspaces of this space with respect to the various fixed point

free (i.e. translational) subgroups of G , i.e. the unit circle

Sl ={z€C ‘ lz] = 1} with its decomposition, derived from R via the various
2ai "
maps R -+ S] tx pel , and the corresponding transformations, consisting of
either the multiplicative and cyclic group of the n-th roots of unity or - only in
case n 1is even - of the dihedral group Dn/Z , generated by the reflections at
ik
5 oy
e , k€ Z .

Since the cartesian product of an n-dimensional and an m-dimensional regular
pattern is easily seen to be an (n+m)-dimensional pattern, we get easily higher di-
mensional regular patterns, e.g. R" together with its "cubic" decomposition and

7 as group of transformations. Turther examples are the dual complexes of the

semisimplical complexes, usually associated to Coxeter-groups (&f [1 ]).

The following remark, concerning n-dimensional regular patterns, may be
useful: For any vertex x € M the set Ex ={g €6 | x and gx are "edge-con-
nected", i.e. are the endpoints of a common edge! gemerates G , if M is connected.
Geometrically, E  may be identified with the set Ex of edges e, having x as
one of its two boundary points, i.e. with x € 3 e . Moreover Ex is closed with

respect to taking inverses, i.e. g € F.x = g-l €E, , since, if the edge

e connects X and gx , then g_le connects g_lx and x . Finally, for any
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two-dimensional polygon p in D , containing x among its vertices, we may order
its vertices according to some orientation: x = Eor X pXgae e s Xy such that ®y and
x],xz and Kysenes X and x, are edge~connected, in which case we can write

. -1 :
= 8%, with g € Ex and thus 8 Xy = ByX, with 8y € Ex and thus
£, 8 x3 = 83%, with 8y € Ex and so on, i.e. we have Xy T BBy By X with

B 28paeeaBy € Ex and 818y By = 1, since X T X, .

Now consider the free group, generated by the symbols {Xglg € Ex} and its nor-
mal subgroup generated by the relatioms Xg . Xh =1 if g,h € Ex , 8 = h-I and

®

Xg . Xg v..*X =1 for each polygon containing x among its vertices. Let €
1 2 k X

denote the factor group. Thus one has a well-defined map G = G : Xg g , whose

kernel is well known to be canonically isomorphic to the fundamental group

*
HI(M) (c£.[2]) . 1In particular G ~G , if M is simply connected.

Since a non simply-connected manifold M can always be derived from its simply
connected universal covering s (as Sl from IR) , which inherits any regular pat-
tern structure from M , we may henceforth assume M to be connected and simply con-
nected and thus G to be the group generated by E modulo the obvious relations,

coming from the pattern structure.

It is the purpose of this paper (a) to describe a method by which one can
classify as well as systematically and explicitely generate all two-dimensional simp-
1y connected regular patterns, and (b) to discuss some open problems related to its
higherdimensional generalization. The solution of these open problems - which would
lead to a far reaching generalization of the concept of Coxeter groups — can almost
certainly be facilitated by the explicit study of those 3-dimensional regular pat-

terns, which are associated with the classical crystallographiec groups.

§ 1 The local type of a two-dimensional

regular pattern

Let (M,D,G) be a two-dimensional regular simply connected pattern. Then the
number of edges ending at a given vertex x 1s dependent of x ; more precisely,
if gx =y (g € G;x,y vertices in M), then g maps the set Ex of edges ending
at x bijectively onto the set Ey of edges, ending at y . The first local in-
variant, associated to (M,D,G) 1is, of course, the number n of edges in any Ey "
Obviously n > 3 .

Secondly, we may identify EX with the corners of a regular polygon, connect-
ing two "corners" (edges) by a line if and only if the edges bound a common face,i.e

can be connected by a line in M , not crossing any other edge or vertex.



Thirdly, using the above identification of Ex and Ex , we can define an in-
yolution I E - Ex ol Ex into itself, which corresponds to the involution

Ex—)Ex 3 pik g_ . In other words, if e € Ex joins x and gx , then

g (e) =g e
}t( ) g
We may indicate the action of o by drawing lines, connecting the corners e

and Ux(e) in the regular polygon representing Ex i

Finally we can define an augmentation et Ex - {#1} by putting gx(e) = 4]
if the corresponding element g € E_ with @e = {x,gx} preserves any given orienta-
tion of M , and e(e) = -1 , if it reverses any given orientation of M .

Obviously gx(e) = sx(dx(e)) .

We may indicate the augmentation by drawing the corners of our representing
polygon as small circles, filled with a "+", if e(e) = +1 for the corresponding

n_n

edge e , and filled with a otherwise.

Thus the local structure of (M,D,G) at a vertex x can be represented by sym

bols of the following type:

©

- ® /To

Obviously, if y = hx(h € ¢) , then the map Ex - Ey : e » he preserves not

only the polygon-structure (though it may change its orientation) , but also the in-

volution and augmentation, i.e. we have oy(he) = h cx(e) and ay(he) = Ex(e) .

since de = {x,gx} 1if and only if 3he = {hx,hgx} = {y,hgﬂly} ;

So we may define the local type of (M,D,G) to be represented by such symbols
(i.e. regular polygons with an involution ¢ and a v-invariant augmentation ¢ de-

fined on its corners) or - rather ~by the isomorphism classes of such symbols.

The first fundamental result, whose proof will become obvious in the following
pages, is, that any such symbol, i.e. any polygon with an arbitrary involution o
and an arbitrary o-invariant augmentation e represents indeed the local type of a
regular two-dimensional pattern (M,D,G) and moreover, one can construct any regular
two-dimensional simply-connected pattern (M,D,G) from its local type in a rather

straight-forward manner.
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So let us list all local types for n =3 :

3.1 3.2 3.3

® ®

3.5 3.6
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We 11 also some local types with n = and n = which will be of im-
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§ 2 How to construct two-dimensional regular patterns

from their local type?

Let us start again with a two-dimensional regular pattern (M,D,G) and a fixed
vertex x € M , Let us choose an orientation of M and let us index the edges in
Ex = {el,ez,...,en) in such a way, that e
the sense of direction around Xys defined by the given orientation. Let us trans-

follows e; (modulo n} according to

fer the involution ¢ and the augmentation € , defined on s in such a way on

{150} , that o (ei) = eo(i) and e(i) = L(Ei). Let us denote the endpoints of
E . -
e; by x, and x; and the element & € B  yjrn de; = (x_,gx )} by g; -

Now let us look at the faces of M , relative to D . If f 1is such a face,
having X, among its vertices, there exists precisely one i such that e and
e; are among the edges of f. Vice versa , for any i = 1,2,..,n there exists pre-
cisely one face fi having ey and e; among its edges. Let us follow the
boundary of fi along the sequence of edges e s Bjonnn corresponding to the

given orientation of M . Depending on wether e(i) = +1 or (i) = -1 , 1i.e.

depending on wether . changes the orientation of M or not , the edge following
P g g 8



e along the boundary line of fi corresponds via the map g *M>M to the edge

following or preceding the edge e_,. %

£y -1 a(i) g
connecting B; X, and By Xy T X, ‘\ \
i.e. this edge is precisely the edge i . \}

gi(eU(i)+e (i))’ which connects

g%, = % With g 0 gy o)) = ;

8i (o (iy+e (i)
"8 Bg(i)+e(i) To ° &i-1 e

In general, if the edge g e

connecting g X, and g X =8 g X,
occurs in the boundary of the face £, then the edge, following g e; in the boundary
of £ with respect to the given orientation of M, is precisely the edge

g gi(ec(i)ﬂ:(i)n) with n = n(g) = +1, if g preserves the orientation of M, and

n(g) = =1 otherwise. To formalize this fact, we conmsider the set {l,...,n} x {1}

and the map
(,ee,md x (213 > {1,.00,m) % {1} 5 (d,m) b (1,mF
defined by (i,m)* = (o(i) + (i) , (i) + n).
Obviously (with i,j,k € {1,...,n} and n,z,& € {#1})
(L,m™ = G,0) ® j = o(i)+eidn and e@)n = g @ a(i) = j—¢
=0(0(j)) - €@ )) » €(j) + ¢ and -e(@(@)) * €(j) + ¢ =-¢ = -e(i)n =
@@ = Gy
Thus, in particular, (i,m* = (k,£)* = (j,z) = o(i) = j-z = (k) and

gd) *n=e(k) - £=>i=% and n=2¢g, i.e. (i,n) = (k,£). So the map

{0l eennd x [E1) > {0,.ean) % {351} 2 (i,n0) b (d,m)t

is injective and therefore bijective and we may therefore split {l,...,n} x {1}
into equivalence classes or orbits with respect to *., putting two elements (i,n)
ad (j,£) into one orbit or equivalence class, if the sequence (i,n), (i,n)*,
(i,n)**,... contains (j,£). For any ¥ orbit (il‘nl)’ (iz,nz) =
; = " * z n * . " "
Ell,n!)*,..:,(ll,n!) = (11_],n1_])‘ with (117n1) ='(1],nll we have'the d|:|al
orbit (0(i,),=e (i )on ), (0; ;meliydong) = (o(i),=e(@)n) .o, (0liy) e (i) on,)
with (a(iy),me () n,)% = (6(i),-e( den)).

Now let's come back to the faces of D. Our above analysis can now be phrased
in the following way: if f is a face, if g e connecting g L and g x; =
g8 X, is an edge, occuring in the boundary 3f of f such that g X, and g *;
are vertices of 8f, following each other with respect to the orientation of 3f,

induced from the given orientation of M. and if (i.n(2))* = (i.z). then the edge.
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=g x.

following g ej in 3f 1is precisely the edge g g; ej connecting g 8; X i

[¢]

and g g; xj =88 &5 Xy and we have n(g gi) =n(g) « e(i) = .

Thus, if we consider f = fi and start with the edge e connecting x,

and x; , we may define by induction (11,nl) = (i,+!) and <lv+l’nv+l) =
*
= (lu’nv) (v=2,3,...) and get xo,xi1 = gil Eys gil giz X gi] giz Xoaseeos
By By e By Xosees with n(gi 8: <448, ) = n, as the sequence of vertices

) v ) Ly-1

occuring in the boundary 3f of £ , one after another. Of course, if fi has

*
N =n, > 3 vertices and edges, then gi1 giz...giN x, = xo’(lN’nN) =(i,1) = (ll,ﬂﬁ

=1, but By teetBy * 1 for v< N= ﬂi e S0, 1E A

and thus B, By -8 i

T I 1 v

* *k
is the length of the orbit (i,1),{(i,1},¢(i,1) ,..., then N = ni must be an

integral multiple of 1;, say Ii-ki = . We define ki to be the orbit-para-

meter of the orbit, containing (i,1) . Obviously 0, = nj and li = lj’ s0

ki = kj , 1f (j,1) occurs either in the orbit, containing (i,l), or in the '"dual’
orbit, containing (o(i),-e(i)), since in both cases there exists g € G with

g * fi = fj.

From the foregoing it is obvious, that the local type of (M,D,G) together
with the orbit parameters determines (M,D,G) wup to isomorphism and it is almost
obvious, that for any local type (n,0,e) and any set of orbit-parameters ki s

satisfying kili >3 and ki = kj if (3,1) occurs either in the orbit of (i,l)

or in the orbit of (o(i), -e(i)) , one can construct a simply connected two-di-
mensional regular patterm (M,D,G) which is of the given local type and has the

given orbit-parameters.

The group G 1is in this case given by the generators BpreeesBy s correspond-

b o |
ing to the corners of the polygon representing the local type, and the relations

8 gu(i) = L 1= ] pusten, T
(g, * . . ) ko 1 i=1 n
8 gi2 oo (B 4 R

1,
1

* *
LE 1) = pund,Uyeng) = Gnp) e, Gy g 3 = Gy_ony_ ) is the
L "=l 1

*
-orbit of (i,1)

Rather then giving an abstract proof of this fact, we will discuss a few
examples. But at first let us remark, that by using regular polygons for the faces
f of D, all with edges of the same length, the two edges at each corner of the

face £, with its n, = kili vertices and edges will span an angle of arc length



w(l—Q/k 1 ) . Thus the sum T ow(l-2/ ) represents the sum of the arc
i =

1

k.1,
i 1

length's of all the angles surrounding LI This leads to the following definition:
of the metriec type of (M,D,G):(M,D,G) or (n,d,tc; kl""‘kn) is defined to be

n
spherical or elliptiec, if ')I “(l_uk.l.) < 27 ; euclidean or paraboliec, if
i1

i=1

m(l= kzl } > 27 . Morecver we de-

1 ;T

n
I or(l- k—zl——) = 2n , and hyperbolic, if
i=] gt i

W

n
fine 2- E (1- kz_l) be the curvature of (M,D,G) or (n,c,e;kl,...,kn).
] il

Because kili > 3, one gets easily, that elliptic patterns can occur only if

n <5 and parabolic patterns only if n< 6 . We'll give a complete list of all
elliptic and parabolic patterns later on.
One can prove, that for (M,D,G), corresponding to (n,0,c; kl,...,kn), the

following statements are equivalent:

(i) M is homeomorphig to the 2-sphere Sz,
(ii) G 1is of finite order,

(iii) (M,D,G) 1is elliptic,

n

in which case the order |G| of G equals 4(2- L (1- ! i
1

)" and (M,D,6) is

2
kL
iR

isomorphic to (SZ,D',G') with G' ¢ Oj(R) consisting of finitely many (proper or

improper) isometries of Sz, i.e. G' is a point group, and D' a metrically

regular pattern on 52

Similarly (M,D,G) 1is euclidean if and only if (M,D,G) 1is isomorphic to
GEZ,D',G') with Ez the euclidean plane, G' one of the 17 two-dimensional
crystallographic groups acting by isometrics on IE2 , and D' a metrically regular
pattern on E” , wyhereas any hyperbolic pattern (M,D,G) is isomorphic to some
pattern (HZ,D',G') with ®? the hyperbolic plane, G' a discrete group of iso-
getries of in with a compact fundamental domain, and D' a metrically regular

pattern on {HZ .

In any such case, a fundamental domain of G' 1is given by each face of the -

metrically - dual decomposition of Sz, IE.2

or le and we can get, indeed, all
discrete subgroups of O(IEZ) and O(Hz) with a compact fundamental domain (or

quotient space) in this way.



Let us now turn to our examples:

3.1 Orbits: (1,+4) = (2,+) » (3,+) » (1,%)
Orbit length: 11 = 12 = 1.3 =3
Orbit parameters: k, =k, = k, =t k > 1
3 1 2 3 =
Curvature: 2 - L(1 - = ) g2 - 1
1 k.L. k
1
] 2 @B x
Relations: g8, =8, =8y = (glgzgs) =1
Metric type: elliptic: k = 1, |G| = 4
euclidean : k = 2
hyperbolic : k > 3
(M’D)k =
(M’D)k = 905
3.9 Orbits: (1,+) = (3,+) = (1,+)

(2,+) » (2,4

Orbit length: 1, =1, =2, 1, =1

1 2 2
Orbit parameters: k, = k, > 2, k, > 3
1 3= 2l =
3 2 2 2
Curvature: 2 - I(l _k.I..) =i + o 1
1 i7i 1 2
k) Ky
Relations: g8, = &, (g]nj) g, =1
Metric type: elliptic: k] = 2,1(3 > 3, EG| = Zkz
12k
k= 3,32k, 25, [6] = g5~

=
(]
w
ta
n
w
=
(]
=3
(=]



0, d),,
i

=

1]
L=

3

v BT s

euclidean: k] =3,k, =6

&
k] =6, kz =3
k= ky =4
hyperbolic: k] = 3, k2 > 6
k]>3,k2>3




Orbits: (1,+#) = (2,+) = (3,4) = (2,7) = (1,7) = (3,7) » (1,4
Orbit length: 1I =1, =1, =6
Orbit parameters: kl =k, =k,>:t k>1

3
¢ T
urvature: ; k.1, k

2

. 2 2 _ k _
Relations: g,° = g,” = 8y = (g]gzg3gzglﬁ3) = 1

Metric type: elliptic: -

Il

euclidean: k

hyperbolic: k > 2

CRON

Orbits: (1,+) = (3,4) =» (2,-) =+ (3,-) » (1,#

Orbit length: 1. =1, =4, 1, = 1

1 3 2
Orbit parameters: ko= k3 AN k2 >3
2 g owd g2
Curvature: 2 - Z (1 - TTET) = T 1
1 T 1 2
2 g B
Relations: g8, = 84 = (8)838,84) =8, =1

Metric type: elliptic: k=1, ky > 3, j¢| = Zk2

k, =

euclidean: k1 =2,k,=4 ; k, = 3,k, =3;

hyperbolic: k] =2, k, > 5;1(.E = 3,k2 > A;k1 > b3



®0 =k, =3

g

8y

7 VAR

Orbits: (1,+)  (3,m)  (2,-)  (3,+) (1,4

2,+) 1,7 (2,4)

Orbit length: 1, = 13 =4, 1

Orbit parameters: ky =ky>

2
Curvature: 2 - I(l - T ) =

i
Relations: glz = 522 = g32 =
Metric type: elliptic: kl =
euclidean: kl =

hyperbolic: kl =

=2

2

s k2



3.6

0Ly, _

A Y
N g\ Y 4
2
KA
" N
[}
ﬂ3 F
Vg
Z \] ’

Orbits: (1,+) = (1,-) = (3,+4) = (1,+}
(2,4) 5 (3,9) » (2,7) » (2,4
The two orbits are dual to each other

Orbit length: 1."=1, =1, =3

1 2 3
Orbit parameters: k! = k2 = k3 = : k
Curvat -2-3(1-2)=3—1
urvature: 1 k

i i i
. 2 2 k
Relations: g8, = g5” = (g,7gy)" = 1

Metric type: elliptic : k = 1, |G|

euclidean = K = 2

u
=~
v
[N]

hyperbolic

v



(4,D)

2,3,6

orbits: (1,+) = (3,-)
(Zedg & {13

(3,4) = (2,7)
Orbit length: l1 = 12
Orbit parameters: k

3
Curvature: 2 - Z(1 -
1

1

i 2 2 2 1 2
Relations: g = g = g3 = (g83) = (g,8,) ={g,8,) 3

By symmetry one may assume k] <k

Metric type: elliptic :

Lk

k=2, k, =3, 3<k, <5; |6| =

= lz#)
=+ (2,+)

= (3,%)

[
w
|

[
+

¥

o ! 2 a

A
=

25

1 2 =%y 2 Py,
euclidean k1 & By k2 = k3 = 4;
L Zs k2 = 3 k3 = 65
=y Wy =
hyperbolic : k, = 2, k, =3, k, > 7
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Orbits: (1,+) = (1,7) = (3,4) » (2,=) = (2,+) = (3,-) = (1,9
Orbit length: 11 = ].2 = 13 =6
Orbit parameters: k, = k, =k, = : k > |

Curvature: 2 -~ £(] - -——

v . 2 2 2. WK =
Relations: 818y = 83 = (gl 838, ga) 1
Metric type: elliptic : -

euclidean : k = 1

hyperbolic : k > 2 .

oDy, | g =

Among the patterns associated to the local types with n = 4 there are precisely 2
infinite series and four individual patterns of elliptic metric type and 17 of
euclidean metric type, for n = 5 we have one pattern of elliptic metric type,
whose local structure is given by 5.1 , and four euclidean patterns, whose local
structure is 5.2,5.3,5.4. or 5.5. For n > 6 there are no elliptic patterns and

7 euclidean patterns with local structure 6.1,6.2,... or 6.7 .

One observes easily that each 2-dimensional crystallographic group occurs
among the groups, associated to euclidean patterns, some of them even several times
(according to which group elements are chosen as generators). Similarly, each finite
subgroup of the full isometry group of S2 occurs among the groups, associated to
elliptic patterns, except for the finite cyclic groups, generated by a proper

rotation, and the group consisting of the inversion and the identity, only.

§ 3 Higher dimensional patterns.

In higher dimensions the local type consists of a polytopial decomposition D of

the (n-1)-sphere Sn-l, an involution ¢ defined on the set DO(Sn_]) of vertices

n*l)

of this decomposition, a o-invariant augmentation & , defined on DD(S 5 and =
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in addition - for each vertex x € Do(s“_l) an orientation reversing or orientation
preserving identification of the local structure around x , induced by D , and
the local structure around o(x) , depending on wether e(x) =+l or e(x) = -1 .

n-1 n-1

In case D 1is the standard decomposition of § , identifying S with
the boundary 9 A" of the n-dimensional standard simplex, and o¢(x) = x ,

¢(x) = -1 for all x we may use the identity, to identify the local structure
around x, orientation preserving, with the local structure around x = o(x) and

thus get all the Coxeter groups.

In general, the canonical procedure, explained in the 2-dimensional case in
the foregoing section, will lead to an orbit-structure on the set of pairs of con-

nected edges in Dl(Sn—I) (i.e. edges ephe, € DI(Sn_I) with @ e n aezl =D,

2
which in turn leads to a definition of orbit parameters, the associated relations
of the group G and a prescription for constructing the space M together with its

decomposition D .
The following questions remain to be answered:

- classify for each dimension n all local types, for which orbit parameters exist,
which lead to a manifold M (for n = 2 there were no restrictions;l am not so sure,

that this remains true in higher dimensions),

- classify for a given local type the various orbit parameters, which lead not only
to a manifold M , but to a manifold of given metric and homdomorphic type (for
n=2 this was achieved by introducing the curvature),

- list all local types and orbit parameters, for which M 1is compact or isometric

n

to the n-dimensional euclidean space E (in higher dimensions this will be pos-—

sible only by the use of computers).

In any case, I believe that these problems can be solved in a satisfying way
only by an explicit study of the well known three-dimensional and the (less well-
known) four-dimensional crystallographic groups from this point of view. As a re-
ward one could hope te get in a systematic way one (or several) geometrically inter-—
pretable sets of generators and relations for each of these groups.

References

(1 Bourbaki: Groupes et Algébres des Lie
Chap. IV Groupes de Coxeter et systems de Tits

Chap. V Groupes engendres par reflection.

(2] Roger C. Lyndon/Paul E. Schupp: Combinatorial Group Theory
Springer Verlag Berlin-Heidelberg 1977
ISBM 3-540-07642-5 Berlin/Heidelberg/New York
ISBM 0-387-07642-5 New York/Heidelberg/Berlin.



- 100 -

Remark

Only after finishing this note I have been made aware of the beautiful work
of Branko Griinbaum and G.C. Shephard on planar patterns. An interesting report on
this work and further references can be found in their memoir "Incidence Symbols and
their application" in "Relations between combinatoric¢s and other parts of mathemat-

ies", Proceedings of Symposia in Pure Mathematics, Vol. XXXIV, AMS, 1979.

Though much wider in its scope, it still does not seem to make the above
note superfluous: whereas their incidence symbol does not necessarily generate a
pattern, but, if it does so, classifies a much wider class of patterns, the symbol
defined above always generates a pattern and lends itself more easily to higher
dimensional generalizations. A detailed comparison of the two approaches will appear

in a forthcoming paper.



