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QUASI SYMMETRIES OF SPACE GROUP ORBITS
Matthew S. Delaney

Mount St. Mary's College
Los Angeles, California

In Crystallographic Groups of Four-dimensional Space [1] a

symmetvy operaiion of an object in space is defined as a mapping of
the space onto itself satisfying two conditions:
{a) It is a rigid motion.
(b) It maps the object as a whole onto itself; that is, the
object after the mapping is not distinguishable from the
original object,

In giving this definition, the authors are careful to point
out the significance of considering the symmetry operation as a mapp-
ing of the full euclidean space onto itself. The set of all such
symmetry operations of a crystal structure is called the space group
of the crystal structure [1].

Now Tlet G be an n-dimensional space group and let P be a point
in ", If 6 is allowed to act on P, it will produce an orbit G(P)
where G(P) =[x: X= g(P), g e G}. The orbit thus produced will depend
greatly on the choice of P within the fundamental cell of the transla-
tion lattice associated with G. For instance, it is always possible
to choose P so that its stabilizer Gp={g e 6 : g(P) = ﬂ consists of
the identity only (2].

The set G(P) is discrete, countable, and homogeneous. By
homogeneous we mean that each point is 'similarly surrounded' by other

points of the orbit. Because of their structure, space group orbits

can be appropriately called Discrete Fuclidean Universes (DEU's).

Here we attempt to look at these universes in relief; that is,
we concentrate on the points of the orbit and prescind as much as
possible from the space in which the orbit is embedded. We will define
quasi symmetry operations on these universes which will be different,
in several respects, from those genuine crystallographic symmetry
operations defined in [1].

To define these new operations, we will introduce a neighborhood
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relation between the points of a DEU. We do this using the concept
of Dirichlet region. Let P, Q ¢ DEU; Q # P. Let S(P,Q) be the
(n-1)-dimensional subspace of E™ such that X e S{P,Q)e+d(P,X)=d(X,Q)
where d represents the ordinary euclidean distance. For each point
Q ¢ DEU, Q # P, S(P,Q) determines two half-spaces in E", one of which
contains P, Let H(P,Q) be the closure of this half-space and let
v(P) =P{H(P,Q): Q ¢ DEU, Q # P}. It is easy to show that V(P) is a
convex polytope with a finite number of (n-1)-dimensional bounding
faces. The interior of V(P) is the Dirichlet region of P and V(P)
will be called the Dirichlet cell associated with P, The set of
Dirichlet cells forms a cell complex & of congruent cells which fill
the space without overlapping and without gaps. Figures 1 to 4
illustrate 2-dimensional complexes. For a thoroughly informative
treatment of Dirichlet domains see Fischer [4] and Koch [5].
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pefinition: A neighborhood of P . DEU is the finite set

H(P) = {Q ¢ DEUSP: V(P)MV(Q) is an (n-1)-dimensional face of V(P)}

Thus each point X ¢ DLU has a finite number of neighbors and
this neighborhood relation is symmetric but neither reflexive nor
transitive, Clearly, this relation is preserved under all crystallo-
graphic symmetry operations; nowever, there are permutations of a DEU
which are not rigid symmetries but nevertheless preserve the neighbor-
hood relation. See figures 1 and 2. Here the non-rigid symmetry
aroups are much larger (Cﬁv)'

We proceed now to characterize certain neighborhood-preserving
automorphisms on the Dirichlet cell complex associated with a DEU.
For this purpose, we introduce a special combinatorial group [6].

Let ¢ be the Dirichlet cell complex for some discrete euclidean
universe,

Definition: A tower is an (n+1)-tupie (s ,s;,...,s ) where s is a
0-cell {vertex), sy @ 1-cell (edge), s, a 2-cell (face), etc. and
SOCS1=52C"”GSn'

Let J(z) be the set of all towers in 2. We construct the follow-
ing aroup ¥ generated by n+l involutions for which 3(1) will form a
homoceneous n-space, i.e. % will act transitively onJ{(e). e illustr-
ate its construction for a 2-dimensional complex; the extension to high:
dimensions is simple. We introduce the following operations:

(1) An dinvolution o which interchanges any two adjacent vertices
but leaves face and edge fixed, i.e. co((so.s!,sz))=(sé,s],g
if 6§]={50,55}.

{2) An involution ¢, which interchanges any pair of edges incidei
with a vertex and a face but leaves that vertex and face
fixed, i.e. un((so,s],sz))r(so.s;.sz). ifs,.sa {2,§]n§}=s1

(3) An iavolution 9y which Teaves any vertex and edge fixed but
interchanges any two faces with & common edge, i.e.,

Oyl (5408 18,0 }=(5,55555), §F §,n%,25.
The folleing, where (v,e,f) = (so,sl,gz), is a picterial representation of a

z-dimensicnal example:
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The combinatorial group for the 2-dimensional towers is
L2=¢ogs01,00p, the group generated by these involutions. For the
n-dimensional case we have L= <°0a“1-°9’°v=-°n7 . It is easy to
show that this group acts transitively on the towers of the Dirichlet
cell complex associated with any DEU El .

In order to obtain all towers attached to a given vertex Vo in
a 2-dimensional world we take the subgroup Z; =< o;,0,)» of % and
allow it to act on the triple (vo,e,f)n The orbit of (vo,e,f) under
g is the set of all such towers. See figure (5). Similarly we allow
L) =<ags0) to act on (v, ey f) to get all towers associated with
eo‘and Ly = <uu,a{> acts on (v, e, fo) to yield all towers attached
to fou The towers with a common 2-cell form an equivalence class.
The gquadruple {J (2), o,,01,0,) describes in abstract combinatorial
manner the Dirichlet cell complex of a DEU.

Let C, (&) denote the i-cells of a DEU complex, then we have the
following one-to-one correspondences in the n-dimensional case:

Cq (¢} +—— orbits of z4 = (al,c;,_,u,cn)
G (2) «—— orbits of x, = <ﬂ0,62,u..,0n>

° u °

C. (¢) «—— orbits of By = <ou,v,n,ui_],uf+],.,.,oH)

C (2) «——— orbits of B, = <c”’u””“"0n—1>
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Figure 5
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We now characterize the quasi symmetry operations by defining
admissible automorphisms as follows:

Definition: An automorphism of a DEU complex & is a permutation
2 of the set of towers J(e¢) which commutes with each element of the
group %, i.e. with wards formed from the generators, O 201504040

ne
We shall elaborate on this definition, Since =n commutes with

go = <n,,o<,ﬂa",gﬁ> s Iy = (“n’“"""“n-f7i"jt defines a permutation
on the orbits of & ,Zi,...,% , that is, on the sets CD(E), C1(2),«°Q,
Cn(L), In other words, if = ((50,51,..u,sn)) = (56, Sk S N

= Vgt vy 4 | on the towers of &l
w((tgatyseenat,)) = (t1,t5,..0,t)) is 2 permutation
complex such that s; = ti, then s% = t%. Thus = can be reconstructed
from the permutations LU PRI N induced by = on Colﬂ). 61(1),000,
C,(2) and defined by w({s;,57500055,)) = (v (50)s wilsq)suuns = (s5.))
This implies, in particular, that = can be viewed through {(mg,m see. 7

as an automorphism of the cell complex ¢; it preserves incidences in ti
sense that s c= Ej inplies "i(si)C: :}T;;B, As a consequence, the abo
defined neighborhood relation on the points of DEU is preserved, since
by the association P » V(P), these may be identified with Cn(E). Thus
A can be identified with its action on Cn(z) or equivalently the point:
in DEU. We have considered the possibility of even larger groups of
pernutations preserving the neighborhood relation but this possibility
seems remote since it would appear that they would disconnect the neigt
borhood graph {(network).

If G is any rigid symmetry group of & DEU it will certainly prese
incidences and thus each ¢ G will commute with each element (word) in

It is easy to see that G can be viewed as a permutation subgroup G of

If “((50’51"“°’Sn)) = (So’sl’“‘“’sn) then n(so) = Id(so),,,,,
n (s, ) = Id(s ). See (2) below.

Let A = Aut (DEU) be the group of all automorphisms defined above
e can associate at least three groups with each orbit of a space grou
(i) The minimal generating group G

(ii) The maximal rigid symmetry group G.I or the eigen symmetry
group

(iii) The group of neighborhood-preserving automorphisms A.



We have 509 G‘ﬁ;A where again &, i=0,1, is viewed as a permutation
group on J(2). Note that although & acts transitively on J{2), the
same may not be true for A or Ei; however, both of these groups are
transitive on the points of DEU, i.e. on Cn(l).

We state the following well-known but important facts:

(1) A is the full group of automorphisms of the homogeneous z-
space, namely the set of towers, J(2), of the Dirichlet cell complex.

(2) There exists at most one neighborhood-preserving automorph-
ism n (as defined above) taking a given tower T] into any other given

tower T, [2].

2
(3) There exists such a « if, and only if, the stabilizer in &

of T] is equal to the stabilizer in % of TZ'

(4) Let T be any tower in J(2) and let I be its stabilizer in &,
then A is isomorphic to N(r)/r, where N (r) is the normalizer of T in &.
This automorphism depends on the choice of T.

(5) If a € A leaves an n-cell V(P) fixed and «#1, then it must
permute the towers contained on V(P) among themselves since it respects
incidences. Thus a is a regular permutation of the finitely many towers
of V(P) and the action of « leaves P fixed. Hence, we may say a stabi-
lizes V(P) if and only if a stabilizes P (2] .

The following is a simple consequence of our discussion, but we
state it as a theorem because of its importance.

Theorem: Let A be the group of automorphisms of a DEU. Let P e DEU and
V(P) its associated Dirichlet cell. Let AP be the stabilizer of P in A,
foe. Ay = {neA : nn(V(P))=V(Pl}. Then A, is a finite group.

Proof: Ap is a set of regular permutations of a finite set and hence
finite. Q.E.D.

This theorem is important because it enables us to show that the
group A of automorphisms of any DEU, which contains a copy Eo of the
generating group, Go’ of that orbit, has the property that the index,
[A:EO] , is finite. This implies that there is a subgrouplisﬁg, where H
is normal and of finite index in A. This can be proved by representing A



as a permutation group on the cosets of Go“ If we consider A as a
permutation group on the towers j(k) and Go as a permutation group
on the points, then it would be natural to consider the wreath product

Aw6G . It is proved in Ea] that A modulo a finite normal subgroup is
isomorphic to a space group.

One of the results of this investigation is that if a monad
{point) in a discrete euclidean universe should wish to make some rougt
determination of the kind of world in which he 1ived, his case would n¢
be quite hopeless. He could carry out local permutations of his first,
second, and third step neighbors and study those which did not disturb
the neighborhcad relation. These permutations will form a group and
somewhere within that group will be a subgroup which is the eigen symme
group Gl of the universe in which the monad lives. Some examples from
Fischer [5] and Koch [5] indicate that the monad's task will frequently
not be an easy one!
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