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ABSTRACT

Consider 6 square mirrors facing inwards on the faces of a
cube, and a flat pencil of light rays reflected from these mirrors.
If the plane of the rays is carefully chosen, the refiected path
may close so as to form a finite polyhedron. The simplest instance
is a regular tetrahedron whose 6 edges are diagonals (one each) of
the 6 faces of the cube. In 4 papers on 'Sxiremwn problems for the
motions of a billiard ball', 1.J. Schoenberg has shown that this
instance maximizes the minimum distance from the centre of the cube
to a face of the polyhedron. He has also generalized this probiem
to an (n-1)-dimensional 'path' inside an n-dimensional cube. It now
appears that his non-convex polytopes can be thoroughly investigated
by using their connection with P. H. Schoute's 'Simplex nets', such
as the (n-1)-dimensional lattice whose points have n integral co-

ordinates with a constant sum (say zero).
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1. Introduction

On a square billiard table with corners (*1,*1),
the path of a ball is easily seen to be periodic if and

only if it begins with a line

Xx + Yy = N,

where X and Y are integers and |N| < |x| +|Y]

[Konig and Szucs 1913, p. 82]. Ignoring a trivial case,
we shall assume XY # 0. We lose no generality by taking
these integers to be positive and relatively prime. After

any number of bounces, the path is still of the form

+xx fyy = vt ,

where k 1is an integer. Among these paths for various
values of k, those that come closest to the origin are
of the form

+xx t vw = nN' ,

where 0 < N' < 1 . The distance of such a path from the
origin is

N' ///x? + yg.

Schoenberg [1975, p.8) was looking for the values of
X, Y, N which will maximize this distance. For this purpose

we must have



so that N is an odd integer. Since |[N| < |x|+ |¥] =2,

s ; +
this implies N = -1, The paths

form a square whose vertices are the midpoints of the edges of

the billiard table.

Analogously, in a kaleidoscope whose mirrors are the

bounding hyperplanes

x =+t (v = 1,2, coni

of an n-cube Voo consider an (n-1)-dimensional pencil of

light rays in the hyperplane

where the X are positive integers with no common divisor

v

greater than 1, and |N| < EXU . The mirror X, = 1

will reflect this hyperplane so as to yield

X (2-x )+ § X x = N,
H 3 v#uUU
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and any number of such reflections will produce

= +
thvxv N * 2k ,

where k is an integer. Among these hyperplanes for
various values of k, those nearest to the origin are of

the form

where 0 < N' < 1 . The distance of such a hyperplane

from the origin, namely
wi iR

attains its greatest possible value when

so that N 1is an odd integer. Since each reflection
reverses the sign of one coordinate and changes by one unit

the k in the eqguation

the number of minus signs on the left has the same parity

as k. Thus, if we begin with
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all the hyperplanes are given by

= +
{suxv = (1ldm)ne

where £, fl and m =0, 1,..., the possible values of

m being limited by the requirement that
I1%4m < n

Since such a hyperplane is unchanged when we reverse the
signs on both sides of the equation, the list can be simplified

to

when n 1is even, and to

when n 1is odd.

The figure formed by all these hyperplanes is simply
a square when n = 2 and a tetrahedron when n = 3
[Kénig and Szucs 1913, p. 871. When n > 3 , the facets
intersect one another internally, lixe the siues ol a ventagran,
so we shall call the figure Scheenberyg's star-poilytope

[Schoenberg 1979, p.00]. His symbol for it is

I n-1
n






