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1. INTRODUCTION

The term metacrystallographic group which appears in the title of this paper is
not a generally accepted one. I have been using it since a few years [1] for any of
those groups whose definition comes logically after a definition of crystallographic
groups. Several kinds of metacrystallographic groups were introduced in the
literature during the last 30 years under a variety of names (a short list of
synonyms can be found in [1]), and some much earlier [2].

A1l metacrystallographic groups considered in this paper are invariance
groups of certain functions defined on crystals regarded as discrete sets of points
in "ordinary space" or on finite subsets of such sets. Metacrystallographic groups
can thus be used to establish a classification of such functions in a similar sense
as space groups were used to establish a classification of crystals. For example,
the metacrystallographic groups called magnetic space groups have extensively been
used to assign classification labels to certain vector functions, called spin
arrangements, which describe magnetically ordered crystals.

The only purpose of this paper is to formulate the definitions of several
kinds of metacrystallographic groups using in all cases the same mathematical
terminology, and to describe concisely some consequences of these definitions. The
above mentioned problem of classification of functions defined on crystals will
here not be discussed at all, although this problem is, from a physical point of

view, one of the main reasons for being interested in metacrystallographic groups.

1 may mention that this paper considerably overlaps with an earlier paper of
nine [1], but the arrangement of the subject is different, and the emphasis is on
different aspects of the subject. In particular, various definitions of equi-
valence classes of metacrystallographic groups are now explicitly formulated and
more carefully compared.

2 GEgEgg\LITIES ON_FUNCTIONS WHOSE INVARIANCE GROUPS ARE METACRYSTALLOGRAPHIC
GROU

In this paper ordinary space or, for short, space means a 3-dimensional
fuclidean point space in the sense of the usual (Weyl's [3]) definition. A
crystallographic group is then any proner or improper subgroup of a space group,
which in turn is a subgroup of the Euclidean group E(3) of space. The elements of
E(3) are called, as usual, isometries. Most definitions and thearems of this paper
can easily be rephrased for any dimension n.

Let ¢ be the set of all functions f: X>Y from a set ¥ = Izr-!
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into a set Y, the two sets X and Y being kept fixed. Here K is any crystallographic
group; 1y is a point of space; kr] is the orbjt of " generated by k or, in other
Tords, the (discrete) point set generated by K from r (if K is a space group, then
Kri is a crygta]). The symmetry group, Sym Kr1, of Kr] consists of al] symmetry
elements of Kr] s th;t is, ofka11 thosg isometries of space which map Krl onte
itself; hence: (Sym Kr])r] = Kr], and K = Sym Kr! (each subgroup of Sym Kr] is
called an_invariance group of Kr,, and each crystallographic group which generates
the_pnint set Kr] is called a generating group of the latter). In particular,
if K is a space group, then the function space + consists of all functions defined
on X = kr] and having values belonging to some specified_set ¥

Remark on notation. A tilde above a letter, as in K, indicates here and
everywhere in this paper that the letter denotes a group; the same letter without
a tilde then denotes an element of that group. However, some groups, like E(3),
are denoted by capital script letters. The unit element of a group will usually
be denoted by E.

By the definition of a point set ir] its symmetry group k is associated with
it. Also some group or groups can always be associated with the set Y. Even if Y
has no algebraic structure at all, one can always associate with Y the symmetric
group on Y or a subgroup of it. 1In particular, if Y is finite and consists of d
elements, one can associate with Y a group of permutations of dearee d. Let the
group associated with Y be ﬁ, and let G be some group defined in terms of K and H.
The group é will usually, but not always, be the direct product K x H. Suppose
next that an action A of G on the function space ¢is defined, that is, a mapping ¢
of the Cartesian product G X © intoc # is defined such that the set of all ordered pairs
([6]f, f) is a permutation of ®; here G &, f e e, and [G]f ¢ ¢ is the image of
(6,f) ¢ G x & under the mapping ¢. If [G]f = f, then G is called a symmetry
element of the function f with respect to the action A. The group constituted by
all the symmetry elements of f (that is, the stabiTizer of f in é)is called the
symmetry group, Sym f, of f. Any subgroup of Sym f is called an invariance group
of f, and as such is a metacrystallographic group. The symmetry group, and in-
variance groups, of f are thus unambiguously defined only after an action A has been

specified. What a metacrystallographic group actually is, depends thus on ¢, G
and A.

Two large classes of metacrystallographic groups of the kind just described
have widely been discussed in the literature: colour groups (here Y is a finite set
with no algebraic structure) and spin groups or vector groups (here Y is a 3-
deimensional Euchidean vector space). Other large classes of metacrystallographic
groups are obtained in the case where the set X = kr1 is embedded in some larger
set X' so that ¢ becomes a space of functions from X' into Y. The metacrystallo-

graphic groups called magnetic groups are obtained by embedding X in space-time
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It should be noted that in part of the literature the elements
of the symmetry group are called symmetry operations while the
term symmetry element is used for the axis of a rotation, the

mirror plane of a reflection, etc..
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while Y is the 3-dimensional carrier space of a representation of a group é
suitably defined. The metacrystallographic groups called super-space groups are
obtained by taking K to be a space group, X' to be a {3+j)- dimensional

Euclidean point space (j>1), and Y a 3-dimensional Euclidean vector space.

If in the case of function spaces for which colour groups and spin groups are de-
fined the definitions of action are modified in a way which involves the wreath
product of groups, then one obtains two new classes of metacrystallographic groups,
the colour W-groups and the spin W-groups. Still another large class of meta-
crystallographic groups is obtained by considering sets of functions defined on the
same set X=Rr] but having values in more than one set Y; such groups are sometimes
called multiple symmetry groups.

Several other kinds of metacrystallographic groups have been considered in the
literature, but, rightly or wrongly, they do not seem to me of actual or virtual
importance in physics, and nothing will be said about them in the sequel; see [4].

In formulating the definitions of colour groups, spin groups, magnetic groups,
etc., it will be convenient to make use of the term subdirect product [5], whose
meaning is as fo]lows Let F x L be the direct product of _any two groups. If an
element of F x L is denoted by (F,L), where F ¢ F and L « L then F and L called
the F- -part and Le part of (AJL) respectively. A subgroup Jof FxL is called
a subdirect product of Fox L if the distinct F- -parts of the elements of J constitute
the group F, and the distinct L—parts of the elements of J the group L.

3. COLOUR GROUPS
This is the case where

X = Krl, Y = {c],cz, S cd}, d & 1.

The finite set Y is not assumed to have any algebraic structure, and therefore its
elements, C15Cps wens Cys MAY be anything, but they are usually called colours, and
Y is then called a colour set. The value c « Y of a function f from X= Kr onto Y
at the point r ¢ Kr] will be denoted by c(r), and the d-colour function f itself
that is, the set of the pairs (r;c{r)) by {r;c(r)}. Since to each point of K:".I
a colour is assigned in this way, the function f is also called a coloured point set
or a d-colour point set.

If action of R on the space # of colour functions {rjc(r)} was defined in the
usual way, that is, if under action of K on &, a colour function {r;c(r)) is mapped
to the function

(A1) [Kl{rse(r)} = {r;c(K']r))for any K « K,

then invariance groups of these functions would simply be crystallographic groups;
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no new groups would be obtained. However, by making use of a transitive group p

of permutations of the colour set Y, one can define an action of the direct product
K x P on ¢. The simplest way of doing that is to require that an element (K,P) of
KxPp acting on {rjc(r)! map it to

(A2) Kl P1irselr)y = {r; PC(K_1V‘)} for any K « K and P ¢ P.

In words: a point r in the colour point set [K|| P]{r;c(r)} has the colour Pc to
which the colour ¢ of the point Ky in {ric(r)} is mapped by the permutation P of the
set Y. The assumed transitivity of P means that the colour of any point in a
coloured point set can be mapped to any other of the d colours by some permutation
belonging to P. A coloured point set that is not invariant under K ¢ K in the sense
of (A1) may very well be invariant under (K,P) & K x P in the sense of (A2) for an
appropriate choice of P. This cbservation leads to the following definition.

(B1) A group B is called a d-colour group if it satisfied the following
conditions:

(C1): B is a subdirect product é(k;ﬁ) of K x 15, where K is a crystallographic
group and l; is a transitive group of permutations of a finite set consisting of
d > 2 elements;

(c2): B is an invariance group of some d-colour function in the sense of (A2).

A colour group é(k;ﬁ’) is called a colour space group, a colour lattice group,
etc., according as f( is a space group, a lattice group, a point group, etc. 2-

colour groups are often called black-and-white groups, or Shubnikov groups.
Colour groups have also been defined in a slightly different ways by modi-

fying (C1): by replacing in (C1) the words "crystallographic groups" by the words
"discrete group of isometries" (then K could be, for example, the icosahedral
group); or the words "subdirect product" by the word "subgroup" (this would mean
regarding crystallographic groups as colour groups, the one-colour groups).

Colour groups for d»2 were first introduced by Belov and Tarkova [6]; a defi-
nition involving permutations of a colour set was proposed by Van der Waerden and
Burckhardt [7]. Groups here called 2-colour groups were first considered by Heesch
[21- =

Since for any colour function {r;c(r)}
TE|| P1{rsc(r)} = {riPc(r)} # {rscl{r)} if PFE,

it follows from (C2) that no colour groups contains any of the elements (E,P) of

K x P except if P=E. (In fact, a deﬁmtlon of colour groups in which this
property of subdirect products of K X P is postulated instead of (C2) is equivalent
to (Dl)) Using this property of colour groups one can show that a subdirect pro-
duct B(K P) is a colour group only if there exists a homomorphism p of K onto 5; in



- ke -

other words, if p is a representation of E by the transitive group 5 of permutations
(a colour group é(k 5) is thus isomorphic onto K) From the theory of permutation
representations it fellows then that each representation of K by a transitive group
of permutations of degree d can be 1dent1f1ed with a homomorphism p of K onto a
trans1t1ue group of permutat1ons of the set K : L of the left cosets of some sub-
group L of index d in K. Conversely, one can show that if K is homomorphic onto P
then each subdirect product é(k,ﬁ) is an invariance group of suitably defined
coloured point set, that is,by (C2), B(K:P) is indeed a colour group. In other
words, a subdirect product é(k'ﬁ) is a colour group if and only if there exists a
permutat1on representat1on p: K>§ Since each non-trivial permutation representa-
tion of K by P is determined by exactly one subgroup dL of index d_z in K each
such permutatlon representation ; can be specified by a symbol B[K( L)] or, for
short, K( L), and the same symbol can and will be used to specify a d-colour group.
The colour groups K(dw) with a fixed group K are said to constitute the family o

K.

The problem of finding all colour groups is thus reduced to the problem of
finding all proper subgroups of finite index in each crystallographic group. How-
ever, one is really not interested in finding all colour groups, but only one colour
group from each equivalence class of colour groups after such equivalence classes
have been defined conveniently. What is convenient depends of course on what one
wants to do with colour groups. In particular, it may be convenient not to regard
any d-colour groups belonging to the same family as equivalent [8]. If one dis-
regards this extreme point of view, then, as far as I know, four different kinds of
equivalence classes of colour groups constituting a family of R have been considered
in the literature:

(D2.1) Two colour groups k(i(l)) and R(ﬂ(z)) are called equivalent if i(l)
£(2) are conjugate subgroups of K [7].

(D2.2) Two colour groups K(L ( )) and K(L(z)) are called equivalent if L(I)
and [(2 are conjugate subgroups of the normalizer of K in the proper affine group
(that is, in the orientation preserving subgroup of the affine group); in other

and

words, if there exists an orientation preserving affine transformation N such that
NENT =k and w0y - (02,

(0D2.3) This is a variant of (D2.2) which is obtained by omitting in (D2.2)
the words "proper"” and "orientation preserving".

(D2.4) Two co]our groups L(]) and [( ) are called equivalent if there exists
an automorphism of K which maps L ! onto L(Z) [9]

In general, these four definitions of equivalence of colour groups give rise to
four distinct partitions of a family of colour groups into equivalence classes:

the greater the integer m in (D2.m), the coarser the partition. However, in many
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special cases two or more such partitions are identical. For example, if k,i(”,
and [(2), are space groups, then the partition of the family of K in the sense of
{(D2.4) will always be identical, by Bieberbach's Theorem, with its partition in the
sense of (D2.3), and even in the sense of (D2.2) provided E“ and [(?) do not form
an enantiomorphic pair. On the other hand, the partition of the family of the
point group D in the sense of (D2.4) and the partition in the sense of (D2.3) are
different. The difference between the equivalence in the sense of (D2.1) and in
the sense of (D2.2) may be illustrated by considering, for example, the family of

a point group Dg.

If one adopts the usual definition of eguivalence classes of crystallographic
groups, according to which two crystallographic groups are called equivalent if
they are conjugate subgroups of the proper affine group (and there are good reasons
in physical crystallography to adopt this definition!), then it is most natural
to give preference to (D2.2) as the definition of equivalence of colour groups. In
fact, the published lists |12,4] of colour point groups give one representative of
each equivalence class in the sense of (D2.2).

Equivalence of colour lattice groups has of course to be defined separately
in the spirit of the Bravais definition of equivalence classes of lattice groups
(not much is known about colour lattice groups [10]).

A straightforward generalization of (D2.2) to the case where two groups do not
belong to the same family is as follows:

(])([“”) and }2(2)([(22)) are called equivalent
if there exists an orientation preserving affine transformation S such that

{D3) Two colour groups K

s ks o k(@) gpg s (1) 571 o {(22)

Only in the case of 2-colour groups have all equivalence classes in the sense
of (D2.2) of colour point groups and colour space groups been determined: there
are 58 of the former, and 1191 of the latter [11 ,4]. A1l equivalence classes
of d-colour point groups, d > 2, are also known [4,12]: there are 212 of them.
Some general theorems concerning the numbers of various equivalence classes of d-
colour 2-dimensional space groups in the sense of (D2.4) are also available [9].

4. SPIN GROUPS

This is the case where X = IZr] and Y is a 3-dimensional Euclidean vector space.
In connection with applications of spin groups (to be defined presently) in the
theory of magnetically ordered crystals, the vector space Y has been called the
spin space, the term spin being used for a magnetic moment vector of an atom (not
to be confused with the electron spin!). Spins are thus vectors which constitute
the spin space Y. A function o={r;v(r)} from % = Izr] into Y, where v(r) is the

spin v at the point r ¢ Ier, is then called a spin arrangement {it will be -here



P (-

always assumed that not all values of o are v = 0). If K is a space group, then a
spin arrangement becomes a simple model for a magnetically ordered crystal. However,
no physical interpretation of functions {r;v(r)} is used in defining spin groups;
the Tatter could just as well be called vector groups.

Next the action of a group R X 2 on the space ¢ of spin arrangements is
defined, where 2 is any subgroup of the group 0(3) of all orthogonal transformations
of the spin space Y: an element (K,n) of K x §2s acting on a spin arrangement
{ryv(r)i, maps the latter to the spin arrangement

(3] (Kol trsvr)} = (rsav(KTr)s

In words: at a point r in the spin arrangement [K|

2]{r;v(r)t there is the spin qv
to which the spin v at the point XK' r in the spin arrangement {r;v(r)] is mapped by
the orthogonal transformation n. It should perhaps be emphasized that, according to
(A3), the orthogonal part R of an isometry K = (R|£) has no effect on the spins of

a spin arrangement. Usina (A3) one is led to the following definition [13,1]:

(D4) A group s is called a spin group {or a vector group) if it satisfies the
following conditions:

(S1): 3 is a subdirect product 3(K;0) of K x 0, where K is a crystallographic
group, and a is a non-trivial group of orthogonal transformations of the spin space;

(S2): s is an invariance group of some spin arrangement in the sense of (A3).

Unlike colour groups, which cannot contain any elements of the form (E,P) with
P # E, a spin group s may very well contain elements of the form (E.n) with @ # E.
A11 such elements of s form a normal subgroup 50, which is called a spin-only group
because it acts non-trivially only in the spin space. Spin-only groups satisfy
(51) with K=E (trivial group). A spin-only group can thus be identified with a
group of orthogonal transformations of the spin space.

One can show that each spin group ;(k;ﬁ) is a direct product of a spin only
group 50 and a spin group E(R;ﬁ) which is a subdirect product of K x 6, where 6 o 2,
and which does not contain any elements of the form (E,Q) with Q # E. Any spin
group which has no such elements is called a non-trivial spin group. Furthermore it
turns out that E(R.ﬁ) is a spin group if and only if z is homomorphic onto (. This
implies that if p is such a homomorphism, and EK is a (normal) subgroup of z which
consists of all the elements of the form (K,E), where K e ker p, then z(K,Q) can
be decomposed into cosets of EK as follows:

Z(qu) = ZK + (K21Q2) ZK F wae F (quoq) ZK;
here g is the order of 6, and Qi = Q(Ki) is the image of Ki under o3 K.I =,

K2, ..., K, are the coset representatives of ker p in K. A symbol E(o:ﬁ > ﬁ)
thus completely specifies a non-trivial spin group. If K is a space group, or a
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point group, etc., then the spin group z(r::IE > Q) is called a spin space group, or
a spin lattice group, or a spin point group, etc.

The spin gruups z(p:K Q) with a fixed K are said to constitute the amﬂy
K those with fixed K and Q the family of K and‘g, and those with fixed K Q, and
ker p , the family of K, 9 and ker p. It follows that the number of spin groups in
the latter family is equal to the number of isomorphisms of K/ker » onto Q, that is,
to the number of automorphisms of Q

How to define equivalence classes of non-trivial spin aroups? As in the case
of colour aroups, there is a choice of answers to this question. However, there is
one answer which seems to be more convenient than others from the point of view of
physical crysta]]ogr-aphy. From that point of view two spin groups, i(r‘]:ii“) , Q“))
and i( K 2)), will certainly not be regarded as ecuivalent if the crystallo-
urapmc groufs K 1 a?d K z are not equivalent in the usual sense (already defined
here), or Q and Q are not conjugate subgroups of the linear group GL(3). It
thus remains to define the equivalence of non-trivial spin groups which constitute
the family of K and Q.

(D5) Let

M k@) ana 2P (o k5 )

be any two spin groups belonaing to the family of K and 6 Furthermore let N be an
element of the normalizer of K in the proper affine group, and M be an element of the
normaHzerlof Q in GL(3). Fmaﬂy let Py be the homomorphism of K onto l) undey

which NKN™© is mapped to MQM if K is mapped to Q under the homomorphism py- The

spin groups z( ) and z(z) are called equivalent if p for some N and some M,
(As in the case of colour lattice groups, the d?’eﬁmtwn of equivalence classes

of spin lattice groups has to be adapted to the usual definition of Bravais classes
of lattice groups; see [14], where also a 1ist of the Bravais classes of spin
lattice groups is given).

It turns out that there are 566 equivalence classes of spin point groups in
the sense of (D5); here it may be mentioned that in the case of spin point groups,
the groups Q are necessarily crystallographic. A list of the representatives of
all these equivalence classes (one point spin group for each class) can be found in
[15,16] . This list provides striking illustrations of the implications of the
definition (D5). Little is known about spin space groups.

5. MAGNETIC GROUPS

This is the case where X = !Zr] is regarded as embedded in a larger set X', the
Cartesian product of Kr1 and the one-dimensional Euclidean pcnnt space E ( )(Et(”
is one of the many meanings of the term time in physics): X' Kr x E (1)

flements of X' are thus points x = (r,t) of space-time, where r ¢ Kv*1 and tekE ('I).
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The Euclidean group Et(l) of Et(1) consists of all time isometries, (A[1), where
(E|r) is a time translation and A is one of the two elements, E (unit element) and
£' (time inversion), of the time-inversion group A (that is, of 0{1)). The set Y is
a 3-dimensional Euclidean vector space which is assumed to be the carrier space of
a matrix representation of the groups K x Et(l). This group is a subgroup of the
direct product N = £(3) x £(1) of the Euclidean group of space E{(3) and the
Euclidean group Et(1) of time, just defined. It is important to realize for what
follows that the structure of the group N (sometimes called the Newton group [17])
can also be regarded as a semidirect product group:
N=(UxR)PT;

here Tis the group of all space-time translations, R, is the group S0(3) of all
proper rotations of space, and U is the discrete space-time group, which consists,
of the unit element, space inversion I, time inversion E', and space-time
inversion 1' = E'T (U has the structure of the "vierergruppe": U = A x i, where 1
is the space-inversion group).

The fact that the vector space Y is the carrier space of a matrix representa-
tion of K x Et(1) uniquely determines an action of this groupona space of
functions from X' into Y, once such a representation is specified: if, relative to
some basis of Y, the matrix r(K,x) represents an element (K,x) of K x Et(1), then a
function f = {(r,t); v(r,t)} from X' into Y will be mapped under action of (K,x)
to the function

(Ad) [Kx]E0r,t)s vir,t)) = {(r,t); (ko) V(K T 0

In what follows it will always be assumed that such a function f is time-in-
dependent, that is, [E,(E|x)]f = f for all time-translations (E|t). This makes it
possible to simplify notations: {r;v(r)} will stand for f, and x can be replaced
by A e ﬁ, so that (A4) becomes

(A5) (K[| ATrv(r)Y = (r; T(K,A) v(KTr)) where (K,) ¢ K x A.

What the matrix representation I' is, depends on the role played in physical
theory by the vectors which constitute the vector space Y. According to the
standard assumptions of the theory of electromagnetism, the field vectors, such as
electric field E, magnetic induction B, polarization D, magnetization M, all
generate the same representations of the R, by the matrices of S0(3), but two
different representations of the discrete space-time group U: vectors E and P
(and therefore also an electric dipole p}) are multiplied by -1, +1, -1, under I,
E', I', (representation r+), while vectors B and M (and therefore also a magnetic
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dipole, that is, a spin S) are multiplied by +1, -1, -1 (representation I.). This
means that in the case of electric dipole arrangements {r;p(r)} the definition (A5)
of action becomes:

(A6) K ATErp(r)Y = €rs RR(KT M), K = (RIE) & K,

where (R|£) denotes an isometry whose orthogonal part is R , and the same letter R
is used for the matrix which represents that orthogonal part in the representation
I On the other hand, in the case of spin arrangements {r;S(r)} the definition
(A5) becomes:

(A7) K[ ATERsS(RY = (rs nAéRRS(K'1r)}, K= (R]£) € K,

where 8p = Det R, and na = +1 or -1 according as A=E or E'. Using {AB) and (A7),
one is in a position to define electric groups and magnetic groups.

(D6) A group mis called a magnetic group if it satisfies the following
conditions:

(M1): m is a subdirect product I;IUZ) of K x A, where K is a crystallographic
group, and A is the time-inversion group;

(M2): m is an invariance group of some spin arrangement in the sense of (A7).
A magnetic group m{K) is called a magnetic space group, or magnetic point aroup.
or etc., according as K is a space group, or a point group, or etc.

Remarks similar to those which immediately follow Definition (D2} can be re-
peated in this case. In particular, replacing the words "subdirect product" by the
word "subgroup" would result in a definition of magnetic groups according to which
each crystallographic group is a magnetic group. If such a modified definition is
adopted, the crystallographic groups are called trivial magnetic groups, while all

other magnetic groups are called non-trivial magnetic groups [18],

In the case of electric dipole arrangements, and the action (A6), a definition
mutatis mutandis, identical with (D6) easily leads to the conclusion that the direct
product K x R itself is, for any crystallographic group K, which does not contain
space inversion I, an electric group. That is why this term is very rarely used.

Coming back to magnetic groups, it immediately follows from (M2) that no
magnetic group contains the element (E,E') of K x A. In fact, a definition of
magnetic groups in which this property of subdirect products of iE x A is postulated
instead of (M2) is equivalent to (D6). Starting out from this property, one can
easily show that a subdirect product mK) of K x A is a magnetic group if and only
if there exists a homomorphism o of f( onto A. The argument is the same as in the
case of colour groups, and since the order of A is 2, there are, for a fixed k,
as many magnetic groups as there are subaroups 21: of index 2 in EE Each (if there
are any!) of these magnetic groups can thus be specified by the symbol ﬁ[i(zﬁ)]
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or, for short, R(zi); they are said to constitute ;ﬁg;fggjll_gjfg (k has no family
at all if it does not have sub-groups of index 2). Since the group A and the
symmetric group 25 are isomorphic, one can establish a one-to-one correspondence
between the magnetic groups which constitute the family of K and the 2-colour
groups (black-and- wh1te groups) belonging to the fam11{ of K by pairing a
netic group m[K( L( ))] with a colour group B[K( L )] if and only if L D

Y ? A magnetic group and a black-and-white group which are the two members
of such a pair are often identified. More generally the terms "magnetic groups"
and “black-and-white groups" are often regarded as synonyms. Such an identification
is often useful, especially as the generally accepted definition of equivalence of
magnetic groups is, mutatis mutandis, identical with the definition (D2.2) of
equivalence of black-and-white groups. It then follows, for example, that the
number of equivalence classes of magnetic space groups is 1191 (they are arranged
into families in [18 1). However, when considering physical consequences of a
magnetic space group ﬁ being the symmetry group of a magnetically ordered crystal
it is essential to take into account the fact time inversion E' appears in some
elements (K,E') of ﬁ. And this not only in quantum mechanical theories, where
time inversion becomes an antiunitary operatorwhile isometries become unitary
operators, but also in classical theories; for example, in the case of magneto-
electric effects [17]. It is in connection with the theory of magnetic order in
crystals, where time inversion plays an important réle, that the term "magnetic
space group" was introduced by Landau and Lifshitz [19 ].

Each magnetic group can also be identified with an appropriate non-trivial
spin group (but the converse is of course not true!); what the "appropriate" spin-
group is, can be easily shown [13, 1]. However, here again one may miss some
physical consequences of magnetic symmetry by considering spin groups and dis-
regarding the role of time inversion. On the other hand, it has been shown [14 ]
that the knowledge of spin lattice groups may make the interpretation of incomplete
data concerning magnetic neutron diffraction less ambiguous.

An extensive cataloque of experimentally determined magnetically ordered
crystals with classification labels [20] assioned to them using magnetic space

groups is available [21]. A similar catalogue, althouah Tess complete, where the
classification labels make use of spin space groups, is also available [22].

A comparison of these two kinds of classification labels can be found in [13].
The idea of using groups later called spin space groups for specifying the
symmetry of magnetically ordered crystals is due to Naish [23].

6. COLOUR W-GROUPS AND SPIN W-GROUPS
An element of a colour group acting on a coloured point set {r;c(r)} has the

same effect on a colour ¢ at all the points r which have the colour s This is
so because the action (A2) is defined in a way such that a permutation P of the
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colour set does not depend on what r is. It has been pointed out by Koptsik and
Kotzev [24,4 ] that by using the wreath product P Qpﬁ of P by i, instead of the
direct product K X E, one can define an action in such a way that a permutation of
a colour set does depend on r. This can also be done, using the wreath product
ﬁ&bi instead of the direct product K x &, in the case of spin arrangements
{r;v{r)!}. Having defined the action of such a wreath products on colour point sets
(that is, colour functions) and on spin arrangements (that is, vector functions)
respectively, one next defines colour W-groups and spin W-groups as invariance
groups of such colour functions and vector function in the sense of this action.
The definitions of colour W-groups and spin W-groups can be formulated in exactly
the same "mathematical style" as the definitions of colour groups and spin groups

formulated in Sections 3 and 4 of this paper. Such a definition of colour W-aroupsi:
formulated explicitly, and its immediate consequences discussed in [1]. A
formulation of a similar definition of spin W-groups does not present any difficulty.
For further development of this subject the reader may be referred to the
publications of Koptsik and Kotzev [25,26].

7. CONCLUDING REMARKS

Only some of the several kinds of metacrystallographic groups mentioned in
Section 2 were explicitly defined and further discussed in this paper. I wanted
only to present, and te illustrate with a few examples, a fairly general uniform
mathematical way of introducing such groups. Because this mathematical way is
often different from that followed by other authors, and as a result the mathe-
mathical style, terminclogy and notation are also quite different,it is not always
a simple matter to compare these various treatments of the subject; and, in any
case, it would take very many pages to do so. For example, even the term "colour
group" is sometimes used in the literature for a much wider class of metacrystallo-
graphic groups than in this paper. In fact, the term "colour groups" or sometimes
"generalized colour groups" seems cccasionally to mean what I call here "meta-
crystallographic groups", and the term "colour symmetry'seems to refer to any
symmetry which cannot be described by means of crystallographic groups [ 4,24].

The Timited length of this paper has prevented me from properly defining and
further discussing the super space groups, which I could only very briefly
characterize in Section 2. The idea to introduce such aroups for a mathematical
description of the so-called modulated crystal structures is due to De Wolff [27].
It has been further developed into a fermal mathematical theory by Janner and

Janssen [28,29]. Super space groups may well become as important in describing the
various modulated crystal structures as space aroups are in the case of
"ordinary" crystals.
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